Skip to main content

Real-Time Near-Infrared Fluorescent Cholangiography During Robotic Single-Site Cholecystectomy

  • Chapter
Book cover Fluorescence Imaging for Surgeons
  • 1173 Accesses

Abstract

The risk of biliary injury during cholecystectomy has increased with the introduction of laparoscopy, with even greater concerns using the single-site approach. On the other hand, the development of a new robotic single-site platform was seen as a potential technical help. In addition, the introduction of real-time near-infrared fluorescent cholangiography during robotic single-site cholecystectomy can also help in assessing the biliary anatomy and might reduce the risk of biliary injury. Moreover, this technology could shorten the operative time in selected patients and might be useful for the development of augmented reality and image-guided surgery in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamsen S, Hansen OH, Funch-Jensen P, Schulze S, Stage JG, Wara P. Bile duct injury during laparoscopic cholecystectomy: a prospective nationwide series. J Am Coll Surg. 1997;184(6):571–8.

    CAS  PubMed  Google Scholar 

  2. Connor S, Garden OJ. Bile duct injury in the era of laparoscopic cholecystectomy. Br J Surg. 2006;93(2):158–68.

    Article  CAS  PubMed  Google Scholar 

  3. Caputo L, Aitken DR, Mackett MC, Robles AE. Iatrogenic bile duct injuries. The real incidence and contributing factors–implications for laparoscopic cholecystectomy. Am Surg. 1992;58(12):766–71.

    CAS  PubMed  Google Scholar 

  4. Jones DB, Soper NJ. Complications of laparoscopic cholecystectomy. Annu Rev Med. 1996;47:31–44.

    Article  CAS  PubMed  Google Scholar 

  5. Orlando 3rd R, Russell JC, Lynch J, Mattie A. Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry. Arch Surg. 1993;128(5):494–8.

    Article  PubMed  Google Scholar 

  6. Smith EB. Complications of laparoscopic cholecystectomy. J Natl Med Assoc. 1992;84(10):880–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Buddingh KT, Nieuwenhuijs VB, van Buuren L, Hulscher JB, de Jong JS, van Dam GM. Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions. Surg Endosc. 2011;25(8):2449–61.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Buddingh KT, Weersma RK, Savenije RA, van Dam GM, Nieuwenhuijs VB. Lower rate of major bile duct injury and increased intraoperative management of common bile duct stones after implementation of routine intraoperative cholangiography. J Am Coll Surg. 2011;213(2):267–74.

    Article  PubMed  Google Scholar 

  9. Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA. 2003;289(13):1639–44.

    Article  PubMed  Google Scholar 

  10. Soper NJ, Flye MW, Brunt LM, Stockmann PT, Sicard GA, Picus D, et al. Diagnosis and management of biliary complications of laparoscopic cholecystectomy. Am J Surg. 1993;165(6):663–9.

    Article  CAS  PubMed  Google Scholar 

  11. Way LW, Stewart L, Gantert W, Liu K, Lee CM, Whang K, et al. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg. 2003;237(4):460–9.

    PubMed Central  PubMed  Google Scholar 

  12. Stiles BM, Adusumilli PS, Bhargava A, Fong Y. Fluorescent cholangiography in a mouse model: an innovative method for improved laparoscopic identification of the biliary anatomy. Surg Endosc. 2006;20(8):1291–5.

    Article  CAS  PubMed  Google Scholar 

  13. Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg. 2013;37(12):2800–11.

    Article  PubMed  Google Scholar 

  14. Buchs NC, Hagen ME, Pugin F, Volonte F, Bucher P, Schiffer E, et al. Intra-operative fluorescent cholangiography using indocyanine green during robotic single site cholecystectomy. Int J Med Robot. 2012;8(4):436–40.

    Article  PubMed  Google Scholar 

  15. Ishizawa T, Bandai Y, Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg. 2009;144(4):381–2.

    Article  PubMed  Google Scholar 

  16. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27(6):2156–62.

    Article  PubMed  Google Scholar 

  17. Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97(9):1369–77.

    Article  CAS  PubMed  Google Scholar 

  18. Ishizawa T, Kaneko J, Inoue Y, Takemura N, Seyama Y, Aoki T, et al. Application of fluorescent cholangiography to single-incision laparoscopic cholecystectomy. Surg Endosc. 2011;25(8):2631–6.

    Article  PubMed  Google Scholar 

  19. Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, et al. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208(1):e1–4.

    Article  PubMed  Google Scholar 

  20. Bucher P, Pugin F, Morel P. Single-port access prosthetic repair for primary and incisional ventral hernia: toward less parietal trauma. Surg Endosc. 2011;25(6):1921–5.

    Article  PubMed  Google Scholar 

  21. Bucher P, Pugin F, Morel P. Single-port access laparoscopic radical left colectomy in humans. Dis Colon Rectum. 2009;52(10):1797–801.

    Article  PubMed  Google Scholar 

  22. Bucher P, Pugin F, Buchs N, Ostermann S, Charara F, Morel P. Single port access laparoscopic cholecystectomy (with video). World J Surg. 2009;33(5):1015–9.

    Article  PubMed  Google Scholar 

  23. Bucher P, Pugin F, Buchs NC, Ostermann S, Morel P. Randomized clinical trial of laparoendoscopic single-site versus conventional laparoscopic cholecystectomy. Br J Surg. 2011;98(12):1695–702.

    Article  CAS  PubMed  Google Scholar 

  24. Madureira FA, Manso JE, Madureira Fo D, Iglesias AC. Randomized clinical study for assessment of incision characteristics and pain associated with LESS versus laparoscopic cholecystectomy. Surg Endosc. 2013;27(3):1009–15.

    Article  PubMed  Google Scholar 

  25. Zhong X, Rui YY, Zhou ZG. Laparoendoscopic single-site versus traditional laparoscopic surgery in patients with cholecystectomy: a meta-analysis. J Laparoendosc Adv Surg Tech A. 2012;22(5):449–55.

    Article  PubMed  Google Scholar 

  26. Yeo D, Mackay S, Martin D. Single-incision laparoscopic cholecystectomy with routine intraoperative cholangiography and common bile duct exploration via the umbilical port. Surg Endosc. 2012;26(4):1122–7.

    Article  PubMed  Google Scholar 

  27. Buddingh KT, Hofker HS, ten Cate Hoedemaker HO, van Dam GM, Ploeg RJ, Nieuwenhuijs VB. Safety measures during cholecystectomy: results of a nationwide survey. World J Surg. 2011;35(6):1235–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Buddingh KT, Nieuwenhuijs VB. The critical view of safety and routine intraoperative cholangiography complement each other as safety measures during cholecystectomy. J Gastrointest Surg. 2011;15(6):1069–70.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Rawlings A, Hodgett SE, Matthews BD, Strasberg SM, Quasebarth M, Brunt LM. Single-incision laparoscopic cholecystectomy: initial experience with critical view of safety dissection and routine intraoperative cholangiography. J Am Coll Surg. 2010;211(1):1–7.

    Article  PubMed  Google Scholar 

  30. Ayloo SM, Buchs NC, Addeo P, Bianco FM, Giulianotti PC. Traditional versus single-site placement of adjustable gastric banding: a comparative study and cost analysis. Obes Surg. 2011;21(7):815–9.

    Article  PubMed  Google Scholar 

  31. Morel P, Buchs NC, Iranmanesh P, Pugin F, Buehler L, Azagury DE, et al. Robotic single-site cholecystectomy. J Hepatobiliary Pancreat Sci. 2014;21:18.

    Article  PubMed  Google Scholar 

  32. Morel P, Hagen ME, Bucher P, Buchs NC, Pugin F. Robotic single-port cholecystectomy using a new platform: initial clinical experience. J Gastrointest Surg. 2011;15(12):2182–6.

    Article  PubMed  Google Scholar 

  33. Vidovszky TJ, Carr AD, Farinholt GN, Ho HS, Smith WH, Ali MR. Single-site robotic cholecystectomy in a broadly inclusive patient population: a prospective study. Ann Surg. 2014;260:134.

    Article  PubMed  Google Scholar 

  34. Faybik P, Hetz H. Plasma disappearance rate of indocyanine green in liver dysfunction. Transplant Proc. 2006;38(3):801–2.

    Article  CAS  PubMed  Google Scholar 

  35. Sherwinter DA. Identification of anomolous biliary anatomy using near-infrared cholangiography. J Gastrointest Surg. 2012;16(9):1814–5.

    Article  PubMed  Google Scholar 

  36. Calatayud D, Milone L, Elli EF, Giulianotti PC. ICG-fluorescence identification of a small aberrant biliary canaliculus during robotic cholecystectomy. Liver Int. 2012;32(4):602.

    Article  PubMed  Google Scholar 

  37. Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, et al. Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc. 2013;27(10):3897–901.

    Article  PubMed  Google Scholar 

  38. Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Lowik CW, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104(3):323–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Speich R, Saesseli B, Hoffmann U, Neftel KA, Reichen J. Anaphylactoid reactions after indocyanine-green administration. Ann Intern Med. 1988;109(4):345–6.

    Article  CAS  PubMed  Google Scholar 

  40. Volonte F, Buchs NC, Pugin F, Spaltenstein J, Schiltz B, Jung M, et al. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot. 2013;9(3):e34–8.

    Article  PubMed  Google Scholar 

  41. Volonte F, Pugin F, Buchs NC, Spaltenstein J, Hagen M, Ratib O, et al. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery. Surg Innov. 2013;20(2):158–63.

    Article  PubMed  Google Scholar 

  42. Buchs NC, Volonte F, Pugin F, Toso C, Fusaglia M, Gavaghan K, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184(2):825–31.

    Article  PubMed  Google Scholar 

  43. Volonte F, Buchs NC, Pugin F, Spaltenstein J, Jung M, Ratib O, et al. Stereoscopic augmented reality for da Vincii robotic biliary surgery. Int J Surg Case Rep. 2013;4(4):365–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas C. Buchs M.D. .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Example of standard robotic single-site cholecystectomy (MOV 27,656 kb)

Example of real-time near-infrared fluorescent cholangiography before dissection of Calot’s triangle during robotic single-site cholecystectomy (MOV 6,732 kb)

318927_1_En_10_MOESM3_ESM.mov

Example of real-time near-infrared cholangiography after dissection of Calot’s triangle during robotic single-site cholecystectomy (MOV 13,128 kb)

Video 10.3

Example of real-time near-infrared cholangiography after dissection of Calot’s triangle during robotic single-site cholecystectomy (MOV 13,128 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buchs, N.C. (2015). Real-Time Near-Infrared Fluorescent Cholangiography During Robotic Single-Site Cholecystectomy. In: Dip, F., Ishizawa, T., Kokudo, N., Rosenthal, R. (eds) Fluorescence Imaging for Surgeons. Springer, Cham. https://doi.org/10.1007/978-3-319-15678-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15678-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15677-4

  • Online ISBN: 978-3-319-15678-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics