Skip to main content

Recrystallization of Silicon by Classical Molecular Dynamics

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

  • 3153 Accesses

Abstract

Recrystallization of amorphous silicon is studied by classical molecular dynamics. First, a simulation scheme is developed to systematically determine the amorphous on crystal (a/c) silicon motion and compare it to established measurements by Olson and Roth [1]. As a result, it is shown that MD simulations using Tersoff [2] potential are adapted to simulate solid phase epitaxy, although a temperature shift to high values should be accounted for, while simulations using Stillinger-Weber [3] allows to study liquid phase epitaxy. In a second part, the simulation approach is applied to the case of a nanostructure [4] where classical recipes fail to achieve complete recrystallization. MD simulations are shown to be in agreement with experimental observations. The analysis of the structural evolution with time provide a support to understand the origin of the defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.L. Olson, J.A. Roth, Kinetics of solid phase crystallization in amorphous silicon. Mater. Sci. Rep. 3, 1–77 (1988)

    Article  Google Scholar 

  2. J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38, 9902–9905 (1988)

    Article  Google Scholar 

  3. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985)

    Article  Google Scholar 

  4. R. Duffy, M.J.H. Van Dal, B.J. Pawlak, M. Kaiser, R.G.R. Weemaes, B. Degroote, E. Kunnen, E. Altamirano, Solid phase epitaxy versus random nucleation and growth in sub-20 nm wide fin field-effect transistors. Appl. Phys. Lett. 90, 241912 (2007)

    Article  Google Scholar 

  5. R. Biswas, G.S. Grest, C.M. Soukoulis, Generation of amorphous-silicon structures with use of molecular dynamics simulations. Phys. Rev. B 36, 7437–7441 (1987)

    Article  Google Scholar 

  6. J.Q. Broughton, X.P. Li, Phase diagram of silicon by molecular dynamics. Phys. Rev. B 35, 9120–9127 (1987)

    Article  Google Scholar 

  7. W.D. Luedtke, U. Landman, Preparation and melting of amorphous silicon by molecular dynamics simulations. Phys. Rev. B 37, 4656–4663 (1988)

    Article  Google Scholar 

  8. R. Car, M. Parrinello, Structural, dynamical, and electronic properties of amorphous silicon: an ab initio molecular-dynamics study. Phys. Rev. Lett. 60, 204–207 (1988)

    Article  Google Scholar 

  9. M.D. Kluge, J.R. Ray, Velocity versus temperature relation for solidification and melting of silicon: a molecular-dynamics study. Phys. Rev. B 38, 1738–1746 (1989)

    Article  Google Scholar 

  10. E. Kim, Y.H. Lee, Structural, electronic, and vibrational properties of liquid and amorphous silicon: tight-binding molecular dynamics approach. Phys. Rev. B 49, 1743–1749 (1994)

    Article  Google Scholar 

  11. P.L. Palla, S. Giordano, L. Colombo, Interfacial elastic properties between a-Si and c-Si. Phys. Rev. B 78, 012105-1-4 (2008)

    Google Scholar 

  12. Y.H. Lee, R. Biswas, C.M. Soukoulis, C.Z. Wang, C.T. Chan, K.M. Ho, Molecular-dynamics simulation of thermal conductivity in amorphous silicon. Phys. Rev. B 43, 6573–6580 (1991)

    Article  Google Scholar 

  13. L. Pelaz, L.A. Marqus, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5976 (2004)

    Article  Google Scholar 

  14. T. Motooka, K. Nisihira, S. Munetoh, K. Moriguchi, A. Shintani, Molecular-dynamics simulations of solid-phase epitaxy of Si: growth mechanisms. Phys. Rev. B 61, 8537–8540 (2000)

    Article  Google Scholar 

  15. A. Mattoni, L. Colombo, Boron ripening during solid-phase epitaxy of amorphous silicon. Phys. Rev B 69, 045204-1-8 (2004)

    Google Scholar 

  16. E. Pearson, T. Takai, T. Halicioglu, W.A. Tiller, Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor. J. Cryst. Growth 70, 33–40 (1984)

    Article  Google Scholar 

  17. R. Bsiwas, D.R. Hamann, Interatomic potentials for silicon structural energies. Phys. Rev. Lett. 55, 2001–2004 (1985)

    Article  Google Scholar 

  18. B.W. Dodson, Development of a many-body Tersoff-type potential for silicon. Phys. Rev. B 35, 2795–2798 (1987)

    Article  Google Scholar 

  19. D. Vanderbilt, S.H. Taole, S. Narasimhan, Anharmonic elastic and phonon properties of Si. Phys. Rev. B 40, 5657–5668 (1989)

    Article  Google Scholar 

  20. B.C. Bolding, H.C. Andersen, Interatomic potential for silicon clusters, crystals, and surfaces. Phys. Rev. B 41, 10568–10585 (1990)

    Article  Google Scholar 

  21. J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Interatomic potential for silicon defects and disordered phases. Phys. Rev. B 58, 2539–2550 (1998)

    Article  Google Scholar 

  22. T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T. Diaz de la Rubia, J. Kim, A.F. Voter, J.D. Kress, Model. Simul. Mater. Sci. Eng. 8, 825 (2000)

    Google Scholar 

  23. E.J. Albenze, P. Clancy, Mol. Simul. 31, 11 (2005)

    Google Scholar 

  24. Y. Lee, G.S. Hwang, Force-matching-based parametrization of the Stillinger-Weber potential for thermal conduction in silicon. Phys. Rev. B 85, 125204-1-5 (2012)

    Google Scholar 

  25. G. Allan, C. Delerue, M. Lannoo, Nature of impurity states in doped amorphous silicon. Phys. Rev. B 61, 10206–10210 (2000)

    Article  Google Scholar 

  26. F. Wooten, K. Winer, D. Weaire, Computer generation of structural models of amorphous Si and Ge. Phys. Rev. Lett. 54, 1392–1395 (1985)

    Article  Google Scholar 

  27. P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966)

    Article  Google Scholar 

  28. G.J. Galvin, J.W. Mayer, P.S. Peercy, Solidification kinetics of pulsed laser melted silicon based on thermodynamic considerations. Appl. Phys. Lett. 46, 644–646 (1985)

    Article  Google Scholar 

  29. E. Lampin, C. Krzeminski, Molecular dynamics simulations of the solid phase epitaxy of Si: growth mechanism and orientation effects. J. Appl. Phys. 106, 063519 (2009)

    Article  Google Scholar 

  30. R. Drosd, J. Washburn, Some observations on the amorphous to crystalline transformation in silicon. J. Appl. Phys. 53, 397–413 (1982)

    Article  Google Scholar 

  31. L. Csepregi, E.F. Kennedy, J.W. Mayer, T.W. Sigmon, Substrate-orientation dependence of the epitaxial regrowth rate from Si-implanted amorphous Si. J. Appl. Phys. 49, 3906–3911 (1978)

    Article  Google Scholar 

  32. E. Lampin, C. Krzeminski, Regrowth of oxide-embedded amorphous silicon studied with molecular dynamics. J. Appl. Phys. 109, 123509 (2011)

    Article  Google Scholar 

  33. E. Lampin, Q.-H. Nguyen, P.A. Francioso, F. Cleri, Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations. Appl. Phys. Lett. 100, 131906 (2012)

    Article  Google Scholar 

  34. S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Interatomic potential for Si-O systems using Tersoff parametrization. Comput. Mater. Sci. 39, 334 (2007)

    Article  Google Scholar 

  35. Y. Kunii, M. Tabe, K. Kajiyama, Amorphous Si/ crystalline Si facet formation during Si solid phase epitaxy near Si/SiO\(_2\) boundary. J. Appl. Phys. 56, 279–285 (1984)

    Article  Google Scholar 

  36. C. Krzeminski, E. Lampin, Modeling of germanium solid and liquid phase epitaxy by molecular dynamics simulation. Poster at eMRS meeting, spring 2010

    Google Scholar 

Download references

Acknowledgments

The results presented in this chapter were obtained during a 5 years collaboration with Dr. Christophe Krzeminski. I acknowledge Pr. Fabrizio Cleri for the numerous discussions on the molecular dynamics technique and on the physics of recrystallization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Lampin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lampin, E. (2015). Recrystallization of Silicon by Classical Molecular Dynamics. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_6

Download citation

Publish with us

Policies and ethics