Skip to main content

Amorphous Phase Change Materials: Structure, Stability and Relation with Their Crystalline Phase

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

Phase Change Materials should be stable enough in their amorphous phase to achieve a durable data retention, however they should also be bad glass formers to be able to recrystallise at high speed. To understand these contradicting properties, we construct models of amorphous Ge–Sb–Te systems using Ab Initio Molecular Dynamics and analyse the structures in relation with the relevant crystalline state. We show that structural patterns that are precursors of the crystalline phase exist in the amorphous state and we identify the signature of the various types of local atomic orders in the X-ray absorption spectra that we compute using Density Functional Theory. We first analyse the mechanical properties of the amorphous phase in the framework of the Maxwell rigidity theory, showing that all efficient Phase Change Materials deviate from the perfect glass and are mechanically stressed-rigid. Additionally, we show that the stability of Phase Change Materials is related to the density of low frequency vibrational modes (Boson peak). We describe how an adequate doping can result in an increased stability of the amorphous phase while keeping intact the phase change ability of the material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Wuttig, N. Yamada, Nat. Mater. 6(11), 824 (2007). doi:10.1038/nmat2009. http://www.ncbi.nlm.nih.gov/pubmed/17972937

  2. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4, 347 (2005)

    Google Scholar 

  3. S.R. Ovshinsky, Phys. Rev. Lett. 21(20) (1968)

    Google Scholar 

  4. A. Klein, H. Dieker, B. Späth, P. Fons, A. Kolobov, C. Steimer, M. Wuttig, Phys. Rev. Lett. 016402, 1 (2008). doi:10.1103/PhysRevLett.100.016402

  5. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, Glass 2849–2856 (1991)

    Google Scholar 

  6. J.A. Kalb, F. Spaepen, M. Wuttig, J. Appl. Phys. 98(5), 054910 (2005). doi:10.1063/1.2037870. http://link.aip.org/link/JAPIAU/v98/i5/p054910/s1&Agg=doi

  7. J. Akola, R. Jones, Phys. Rev. B 76(23), 1 (2007). doi:10.1103/PhysRevB.76.235201. http://link.aps.org/doi/10.1103/PhysRevB.76.235201

  8. J. Akola, R. Jones, S. Kohara, S. Kimura, K. Kobayashi, M. Takata, T. Matsunaga, R. Kojima, N. Yamada, Phys. Rev. B 80(2), 2 (2009). doi:10.1103/PhysRevB.80.020201. http://link.aps.org/doi/10.1103/PhysRevB.80.020201

  9. C. Bichara, M. Johnson, J.P. Gaspard, 4–7 (2007). doi:10.1103/PhysRevB.75.060201

  10. S. Caravati, M. Bernasconi, T. Kuhne, M. Krack, M. Parrinello, Phys. Rev. Lett. 102(20), 1 (2009). doi:10.1103/PhysRevLett.102.205502. http://link.aps.org/doi/10.1103/PhysRevLett.102.205502

  11. S.R. Elliott, J. Hegedus, Nat. Mater. 56, 399 (2008). doi:10.1038/nmat2157

  12. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7(12), 972 (2008). doi:10.1038/nmat2330. http://www.ncbi.nlm.nih.gov/pubmed/19011618

  13. J.P. Gaspard, F. Marinelli, A. Pellegatti, Europhys. Lett. (EPL) 3(10), 1095 (1987). doi:10.1209/0295-5075/3/10/007. http://stacks.iop.org/0295-5075/3/i=10/a=007?key=crossref.4f75dfc829590834357c1699c95b8d27

  14. F.M.J.P. Gaspard, A. Pellegatti, Philos. Mag. B 77(3), 727 (1998). doi:10.1080/014186398259149. http://www.informaworld.com/openurl?genre=article&doi=10.1080/014186398259149&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

  15. S. Shamoto, N. Yamada, T. Matsunaga, T. Proffen, J.W. Richardson, J.H. Chung, T. Egami, Appl. Phys. Lett. 86(8), 081904 (2005). doi:10.1063/1.1861976. http://link.aip.org/link/APPLAB/v86/i8/p081904/s1&Agg=doi

  16. T. Matsunaga, N. Yamada, 1–8 (2004). doi:10.1103/PhysRevB.69.104111

  17. W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, Nat. Mater. 5(1), 56 (2005). doi:10.1038/nmat1539. http://www.nature.com/doifinder/10.1038/nmat1539

  18. C. Steimer, V. Coulet, W. Welnic, H. Dieker, R. Detemple, C. Bichara, B. Beuneu, J.P. Gaspard, M. Wuttig, Adv. Mater. 20(23), 4535 (2008). doi:10.1002/adma.200700016. http://doi.wiley.com/10.1002/adma.200700016

  19. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004). doi:10.1038/nmat1215

  20. B. Huang, J. Robertson, Phys. Rev. B 81(8), 1 (2010). doi:10.1103/PhysRevB.81.081204. http://link.aps.org/doi/10.1103/PhysRevB.81.081204

  21. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7(8), 653 (2008). doi:10.1038/nmat2226. http://www.ncbi.nlm.nih.gov/pubmed/18622406

  22. C. Massobrio, M. Micoulaut, P.S. Salmon, Solid State Sci. 12(2), 199 (2010). doi:10.1016/j.solidstatesciences.2009.11.016. http://dx.doi.org/10.1016/j.solidstatesciences.2009.11.016

  23. C. Bichara, M. Johnson, J.Y. Raty, Phys. Rev. Lett. 267801, 1 (2005). doi:10.1103/PhysRevLett.95.267801

  24. S. Caravati, M. Bernasconi, M. Parrinello, Phys. Rev. B 81(1), 1 (2010). doi:10.1103/PhysRevB.81.014201. http://link.aps.org/doi/10.1103/PhysRevB.81.014201

  25. K. Singh, R. Satoh, K. Tsuchiya, J. Phys. Soc. Jpn. 72, 2546 (2003)

    Article  Google Scholar 

  26. C. Bichara, A. Pellegatti, J.P. Gaspard, Phys. Rev. 140, A1133–1138; 47(9), 5002 (1993)

    Google Scholar 

  27. W. Welnic, S. Botti, L. Reining, M. Wuttig, Phys. Rev. Lett. 98236403 (2007)

    Google Scholar 

  28. D. Baker, M. Paesler, G. Lucovsky, S. Agarwal, P. Taylor, Phys. Rev. Lett. 96(25), 5 (2006). doi:10.1103/PhysRevLett.96.255501. http://link.aps.org/doi/10.1103/PhysRevLett.96.255501

  29. S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu, M. Takata, 3 (2006). doi:10.1063/1.2387870

  30. J.Y. Raty, C. Otjacques, J.P. Gaspard, C. Bichara, Solid State Sci. 12(2), 193 (2010). doi:10.1016/j.solidstatesciences.2009.06.018. http://linkinghub.elsevier.com/retrieve/pii/S1293255809002295

  31. S. Caravati, M. Bernasconi, T.D. Kuhne, M. Krack, M. Parrinello, Appl. Phys. Lett. 91(17), 171906 (2007). doi:10.1063/1.2801626. http://link.aip.org/link/APPLAB/v91/i17/p171906/s1&Agg=doi

  32. J. Hegedüs, S.R. Elliott, Nat. Mater. 7(5), 399 (2008). doi:10.1038/nmat2157. http://www.ncbi.nlm.nih.gov/pubmed/18362909

  33. Z. Sun, J. Zhou, R. Ahuja, Phys. Rev. Lett. 96055507 (2006)

    Google Scholar 

  34. J. Akola, R. Jones, Phys. Rev. Lett. 100(20), 21 (2008). doi:10.1103/PhysRevLett.100.205502. http://link.aps.org/doi/10.1103/PhysRevLett.100.205502

  35. R. Mazzarello, S. Caravati, S. Angioletti-Uberti, M. Bernasconi, M. Parrinello, Phys. Rev. Lett. 104(8), 1 (2010). doi:10.1103/PhysRevLett.104.085503. http://link.aps.org/doi/10.1103/PhysRevLett.104.085503

  36. T. Matsunaga, N. Yamada, Phys. Rev. B 69(10), 1 (2004). doi:10.1103/PhysRevB.69.104111. http://link.aps.org/doi/10.1103/PhysRevB.69.104111

  37. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 10(3), 202 (2011). doi:10.1038/nmat2934. http://www.ncbi.nlm.nih.gov/pubmed/21217692

  38. W. Zhang, A. Thiess, P. Zalden, R. Zeller, P.H. Dederichs, J.Y. Raty, M. Wuttig, S. Blügel, R. Mazzarello, Nat. Mater. 11(11), 952 (2012). doi:10.1038/nmat3456. http://www.ncbi.nlm.nih.gov/pubmed/23064498

  39. J.J. Rehr, R.C. Albers, Phys. Rev. B 41, 8139 (1990)

    Article  Google Scholar 

  40. G. Ferlat, J.C. Soetens, A.S. Miguel, P.A. Bopp, J. Phys. Condens. Matter 17(5), S145 (2005). doi:10.1088/0953-8984/17/5/015. http://stacks.iop.org/0953-8984/17/i=5/a=015?key=crossref.820fb7775c2250b70fa4ce9c7beb63c7

  41. G. Pfeiffer, J. Rehr, D. Sayers, Phys. Rev. B 51(2), 804 (1995)

    Article  Google Scholar 

  42. M. Krbal, A. Kolobov, P. Fons, J. Tominaga, S. Elliott, J. Hegedus, T. Uruga, Phys. Rev. B 83(5), 1 (2011). doi:10.1103/PhysRevB.83.054203. http://link.aps.org/doi/10.1103/PhysRevB.83.054203

  43. J. Kas, Toward Quantitative Calculation and Analysis of X-Ray Absorption Near Edge Spectra, Ph.D. Thesis, University of Washington, 2009

    Google Scholar 

  44. P.E. Blöchl, Phys. Rev. B 50(24), 17953 (1994). http://link.aps.org/doi/10.1103/PhysRevB.50.17953

  45. G. Kresse, J. Hafner, Phys. Rev. B 49(20) (1994)

    Google Scholar 

  46. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  47. D. Prendergast, G. Galli, Phys. Rev. Lett. 96(21), 215502 (2006). doi:10.1103/PhysRevLett.96.215502. http://link.aps.org/doi/10.1103/PhysRevLett.96.215502

  48. G. Lucovsky, J.P. Washington, L. Miotti, M. Paesler, Phys. Status Solidi (C) 847(3) (2010). doi:10.1002/pssc.200982887. http://doi.wiley.com/10.1002/pssc.200982887

  49. C.L. Bull, P.F. McMillan, J.P. Itiïœ, A. Polian, Phys. Status Solidi (A) 201(5), 909 (2004). doi:10.1002/pssa.200306786. http://doi.wiley.com/10.1002/pssa.200306786

  50. M. Micoulaut, J.Y. Raty, C. Otjacques, C. Bichara, Phys. Rev. B 81(17), 1 (2010). doi:10.1103/PhysRevB.81.174206. http://link.aps.org/doi/10.1103/PhysRevB.81.174206

  51. A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, T. Uruga, Nat. Chem. 3(4), 311 (2011). doi:10.1038/nchem.1007. http://www.ncbi.nlm.nih.gov/pubmed/21430691

  52. B. Huang, J. Robertson, Phys. Rev. B 81, 081204R (2010)

    Article  Google Scholar 

  53. J.S. Van Duijneveldt, D. Frenkel, J. Chem. Phys. 96, 4655 (1992). doi:10.1063/1.462802

  54. J. Chung, M. Thorpe, Phys. Rev. B 59(7), 4807 (1999). doi:10.1103/PhysRevB.59.4807. http://link.aps.org/doi/10.1103/PhysRevB.59.4807

  55. S. Chakravarty, D.G. Georgiev, P. Boolchand, M. Micoulaut, J. Phys. Condens. Matter 17, 1 (2005). doi:10.1088/0953-8984/17/1/L01

  56. J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979)

    Article  Google Scholar 

  57. M.F. Thorpe, J. Non-Cryst. Solids 57(3), 355 (1983). http://www.scopus.com/inward/record.url?eid=2-s2.0-0021093473&partnerID=40&md5=4854ab8fab097a30aa0808d48fef3517

  58. M. Micoulaut, J. Raty, C. Otjacques, C. Bichara, Phys. Rev. B 81, 174206 (2010). doi:10.1103/PhysRevB.81.174206

  59. C. Cabral, J. Bruley, S. Raoux, V. Deline, A. Madan, T. Pinto, Appl. Phys. Lett. 93, 071906 (2008). doi:10.1063/1.2970106

  60. G.E. Ghezzi, J.Y. Raty, S. Maitrejean, A. Roule, E. Elkaim, F. Hippert, Appl. Phys. Lett. 99, 151906 (2011). doi:10.1063/1.3651321

  61. J.Y. Raty, P. Noé, G. Ghezzi, S. Maîtrejean, C. Bichara, F. Hippert, Phys. Rev. B 88(1), 014203 (2013). doi:10.1103/PhysRevB.88.014203. http://link.aps.org/doi/10.1103/PhysRevB.88.014203

  62. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H.C. Wille, R.P. Hermann, M. Wuttig, Adv. Funct. Mater. 21(12), 2232 (2011). doi:10.1002/adfm.201002274. http://doi.wiley.com/10.1002/adfm.201002274

  63. G. Naumis, H. Flores-Ruiz, Phys. Rev. B 78(9) (2008). doi:10.1103/PhysRevB.78.094203. http://link.aps.org/doi/10.1103/PhysRevB.78.094203

  64. H.M. Flores-ruiz, G.G. Naumis, 1–5 (2010). doi:10.1103/PhysRevB.82.214201

  65. R. Shaltaf, E. Durgun, J.Y. Raty, P. Ghosez, X. Gonze, Phys. Rev. B 78(20), 1 (2008). doi:10.1103/PhysRevB.78.205203. http://link.aps.org/doi/10.1103/PhysRevB.78.205203

Download references

Acknowledgments

The authors wish to than Profs. Jean-Pierre Gaspard, Pierre Noé and Françoise Hippert for fruitful discussions. J.Y.R. acknowledges support the FNRS (FRFC.2405.09), BelSpo (PAI 6/42), the University of Liége (ARC “Themoterm”), and computing support from the Lawrence Livermore National Laboratory and the Julich Supercomputing Center. Support from the “Agence Nationale de la Recherche” (project ANR-11-BS08-0012) is gratefully acknowledged. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Raty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raty, JY., Otjacques, C., Peköz, R., Lordi, V., Bichara, C. (2015). Amorphous Phase Change Materials: Structure, Stability and Relation with Their Crystalline Phase. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_18

Download citation

Publish with us

Policies and ethics