Skip to main content

Ab Initio Molecular-Dynamics Simulations of Doped Phase-Change Materials

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

  • 3133 Accesses

Abstract

The physical behaviour and device performance of phase-change, non-volatile memory materials can often be improved by the incorporation of small amounts of dopant atoms. In certain cases, new functionality can also be introduced, for example a contrast in magnetic properties between amorphous and crystalline phases of the host phase-change material when certain transition-metal dopants are included. This Chapter reviews some of the experimental data relating to doped phase-change materials and, in particular, a survey is given of the role played by molecular-dynamics simulations in understanding the atomistic mechanisms involved in the doping process. In addition, some examples are given of the in silico discovery of new phase-change compositions resulting from ab initio molecular-dynamics (AIMD) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.F. Bader, in Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press, 1990)

    Google Scholar 

  2. G. Betti Beneventi et al., Sol. St. Electr. 65–66, 197 (2011)

    Google Scholar 

  3. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  4. S. Caravati et al., J. Phys. Cond. Matt. 23, 265801 (2011)

    Article  Google Scholar 

  5. Y.C. Chen et al., IEDM Tech. Dig. 777–780, S30P3 (2006)

    Google Scholar 

  6. E. Cho et al., Appl. Phys. Lett. 99, 183501 (2011a)

    Article  Google Scholar 

  7. E. Cho et al., J. Appl. Phys. 109, 043705 (2011b)

    Article  Google Scholar 

  8. L. Fang, J. Appl. Phys. 107, 104506 (2010)

    Article  Google Scholar 

  9. X.T. Fu et al., Appl. Phys. Lett. 100, 201906 (2012)

    Article  Google Scholar 

  10. G.E. Ghezzi et al., Appl. Phys. Lett. 99, 151906 (2011)

    Article  Google Scholar 

  11. A. Kolobov et al., Appl. Phys. Lett. 100, 061910 (2012)

    Article  Google Scholar 

  12. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  13. Y. Li, R. Mazzarello, Adv. Mater. 24, 1429 (2012)

    Article  Google Scholar 

  14. D. Loke et al., Sci. 336, 1566 (2012)

    Article  Google Scholar 

  15. J.P Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  16. L. Perniola et al., Proc. ESSDERC 313 (2010)

    Google Scholar 

  17. M. Putero et al., Appl. Phys. Lett. Mater. 1, 062101 (2013a)

    Google Scholar 

  18. M. Putero et al., Appl. Phys. Lett. 103, 231912 (2013b)

    Article  Google Scholar 

  19. S. Raoux et al., J. Appl. Phys. 105, 064918 (2009)

    Article  Google Scholar 

  20. Y. Saito, Y. Sutou, J. Koike, Appl. Phys. Lett. 102, 051910 (2013)

    Article  Google Scholar 

  21. J.M. Skelton, S.R. Elliott, J. Phys. Cond. Matt. 25, 205801 (2013)

    Article  Google Scholar 

  22. J.M. Skelton et al., Appl. Phys. Lett. 101, 024106 (2012)

    Article  Google Scholar 

  23. J.M. Skelton et al., Appl. Phys. Lett. 102, 224105 (2013)

    Article  Google Scholar 

  24. W.-D. Song et al., Adv. Mater. 20, 2394 (2008)

    Google Scholar 

  25. G. Wang et al., Appl. Phys. Lett. 101, 051906 (2012)

    Article  Google Scholar 

  26. W. Zhang et al., Adv. Mat. 24, 4387 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skelton, J.M., Lee, T.H., Elliott, S.R. (2015). Ab Initio Molecular-Dynamics Simulations of Doped Phase-Change Materials. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_16

Download citation

Publish with us

Policies and ethics