Skip to main content

The Atomic-Scale Structure of Network Glass-Forming Materials

  • Chapter
  • First Online:
Book cover Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

A prerequisite for understanding the physico-chemical properties of network glass-forming materials is knowledge about their atomic-scale structure. The desired information is not, however, easy to obtain because structural disorder in a liquid or glass leads to complexity. It is therefore important to design experiments to give site-specific information on the structure of a given material in order to test the validity of different molecular dynamics models. In turn, once a molecular dynamics scheme contains the correct theoretical ingredients, it can be used both to enrich the information obtained from experiment and to predict the composition and temperature/pressure dependence of a material’s properties, a first step in using the principles of rational design to prepare glasses with novel functional properties. In this chapter the symbiotic relationship between experiment and simulation is explored by focussing on the structures of liquid and glassy ZnCl\(_2\) and GeSe\(_2\), and on the structure of glassy GeO\(_2\) under pressure. Issues to be addressed include extended range ordering on a nanometre scale, the formation of homopolar (like-atom) bonds, and the density-driven mechanisms of network collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature, the results from RMC or EPSR models are sometimes erroneously referred to as ‘experimental results’ when comparisons are made with molecular dynamics simulations.

  2. 2.

    Increasingly, molecular dynamics is being used to provide the starting models for refinement procedures, see e.g. [12, 13].

  3. 3.

    Chalcogenide glass-forming materials are those containing one or more of the chalcogen elements S, Se and Te.

  4. 4.

    A rigorous derivation of the Lorch modification function and its corresponding real-space representation is given in [50].

  5. 5.

    The radii correspond to six-fold coordinated ions.

  6. 6.

    A so-called principal peak or trough at \(k_\mathrm{PP} \simeq \) 2–3 Å\(^{-1}\) is a common feature in the partial structure factors for liquid and glassy materials [47].

  7. 7.

    The \(r\)-space functions for the liquid were obtained from a maximum entropy analysis in which homopolar bonds were not excluded. Those for the glass were obtained from a procedure aimed at removing the effect in \(r\)-space of the modification function \(M(k)\). A more complete discussion is given in [21, 23, 80].

  8. 8.

    For the glass, an estimate of the number of Ge atoms in CS tetrahedra \(N_\mathrm{Ge, CS}\) can be obtained by taking \(N_\mathrm{Ge} = N_\mathrm{Ge, ES} + N_\mathrm{Ge, CS} + N_\mathrm{Ge, homo}\) where \(N_\mathrm{Ge, homo}\) is the number of Ge atoms in homopolar Ge–Ge bonds (see Appendix). If there are no extended chains of ES units then the corresponding coordination number \(\bar{n}_\mathrm{Ge}^\mathrm{Ge} = \left( N_\mathrm{Ge, ES} \times 1\right) /N_\mathrm{Ge}\) = 0.34(5) and if homopolar bonds form only in pairs then the corresponding coordination number \(\bar{n}_\mathrm{Ge}^\mathrm{Ge} = \left( N_\mathrm{Ge, homo} \times 1\right) /N_\mathrm{Ge}\) = 0.25(5). Hence \(N_\mathrm{Ge, CS}/N_\mathrm{Ge}\) = 1 \(-\) 0.34(5) \(-\) 0.25(5) = 0.41(7) such that \(N_\mathrm{Ge, ES}/N_\mathrm{Ge, CS}\) = 0.34(5)/0.41(7) = 0.83(16) [23].

  9. 9.

    In [31] a first-principles molecular dynamics model for liquid GeSe\(_2\) using the Perdew and Wang generalised gradient approximation was given as an example of a class III system. More recent models of this material using the BLYP generalised gradient approximation reduce the chemical disorder and produce a more pronounced FSDP in \(S_\mathrm{CC}(k)\), in better accord with experiment (Fig. 1.9). The measured FSDP in \(S_\mathrm{CC}(k)\) for glassy GeSe\(_2\) is accurately reproduced by first-principles molecular dynamics simulations using the BLYP generalised gradient approximation (Fig. 1.9).

  10. 10.

    A ring is a measure of the network topology and is a closed path usually chosen to pass along the bonds which connect nearest-neighbour atoms. A ring is primitive if it cannot be decomposed into smaller rings [108].

  11. 11.

    As shown in Fig. 1.13b, the Ge–O coordination number obtained at \(\sim \)8 GPa (\(\rho /\rho _0 \sim \) 1.4) from the IXS experiments is large relative to the value obtained from neutron diffraction experiments in a regime for which the IXS data give, relative to molecular dynamics, a much greater fraction of GeO\(_6\) units relative to GeO\(_4\) and GeO\(_5\) units (Fig. 1.14a).

References

  1. M. Yamane, Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. S.Y. Park, S.K. Lee, Geochim. Cosmochim. Acta 80, 125 (2012)

    Google Scholar 

  3. R.L. McGreevy, L. Pusztai, Mol. Simul. 1, 359 (1988)

    Google Scholar 

  4. R.L. McGreevy, J. Phys.: Condens. Matter 13, R877 (2001)

    Google Scholar 

  5. A.K. Soper, Chem. Phys. 202, 295 (1996)

    Google Scholar 

  6. A.K. Soper, Phys. Rev. B 72, 104204 (2005)

    Google Scholar 

  7. D.A. Keen, Phase Transitions 61, 109 (1997)

    Google Scholar 

  8. M.G. Tucker, D.A. Keen, M.T. Dove, K. Trachenko, J. Phys.: Condens. Matter 17, S67 (2005)

    Google Scholar 

  9. A.K. Soper, J. Phys.: Condens. Matter 19, 335206 (2007)

    Google Scholar 

  10. A.K. Soper, C.J. Benmore, Phys. Rev. Lett. 108, 259603 (2012)

    Google Scholar 

  11. A. Zeidler, P.S. Salmon, H.E. Fischer, J.C. Neuefeind, J.M. Simonson, H. Lemmel, H. Rauch, T.E. Markland, Phys. Rev. Lett. 108, 259604 (2012)

    Google Scholar 

  12. L.B. Skinner, A.C. Barnes, P.S. Salmon, H.E. Fischer, J.W.E. Drewitt, V. Honkimäki, Phys. Rev. B 85, 064201 (2012)

    Google Scholar 

  13. L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara, Phys. Rev. B 87, 024201 (2013)

    Google Scholar 

  14. S. Biggin, J.E. Enderby, J. Phys. C: Solid State Phys. 14, 3129 (1981)

    Google Scholar 

  15. P.S. Salmon, R.A. Martin, P.E. Mason, G.J. Cuello, Nature 435, 75 (2005)

    Google Scholar 

  16. A. Zeidler, P.S. Salmon, R.A. Martin, T. Usuki, P.E. Mason, G.J. Cuello, S. Kohara, H.E. Fischer, Phys. Rev. B 82, 104208 (2010)

    Google Scholar 

  17. A. Zeidler, P. Chirawatkul, P.S. Salmon, T. Usuki, S. Kohara, H.E. Fischer, W.S. Howells, J. Non-Cryst. Solids 407, 235 (2015)

    Google Scholar 

  18. M. Wilson, P.A. Madden, J. Phys.: Condens. Matter 5, 6833 (1993)

    Google Scholar 

  19. P.A. Madden, M. Wilson, Chem. Soc. Rev. 25, 339 (1996)

    Google Scholar 

  20. M. Wilson, Phys. Chem. Chem. Phys. 14, 12701 (2012)

    Google Scholar 

  21. I.T. Penfold, P.S. Salmon, Phys. Rev. Lett. 67, 97 (1991)

    Google Scholar 

  22. I. Petri, P.S. Salmon, H.E. Fischer, Phys. Rev. Lett. 84, 2413 (2000)

    Google Scholar 

  23. P.S. Salmon, I. Petri, J. Phys.: Condens. Matter 15, S1509 (2003)

    Google Scholar 

  24. M. Cobb, D.A. Drabold, R.L. Cappelletti, Phys. Rev. B 54, 12162 (1996)

    Google Scholar 

  25. M. Cobb, D.A. Drabold, Phys. Rev. B 56, 3054 (1997)

    Google Scholar 

  26. C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 2342 (1998)

    Google Scholar 

  27. C. Massobrio, A. Pasquarello, R. Car, J. Am. Chem. Soc. 121, 2943 (1999)

    Google Scholar 

  28. C. Massobrio, A. Pasquarello, R. Car, Comput. Mater. Sci. 17, 115 (2000)

    Google Scholar 

  29. X. Zhang, D.A. Drabold, Phys. Rev. B 62, 15695 (2000)

    Google Scholar 

  30. C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. B 64, 144205 (2001)

    Google Scholar 

  31. C. Massobrio, M. Celino, A. Pasquarello, Phys. Rev. B 70, 174202 (2004)

    Google Scholar 

  32. C. Massobrio, A. Pasquarello, J. Phys.: Condens. Mater 19, 415111 (2007)

    Google Scholar 

  33. C. Massobrio, A. Pasquarello, Phys. Rev. B 75, 014206 (2007)

    Google Scholar 

  34. C. Massobrio, A. Pasquarello, Phys. Rev. B 77, 144207 (2008)

    Google Scholar 

  35. M. Wilson, B.K. Sharma, C. Massobrio, J. Chem. Phys. 128, 244505 (2008)

    Google Scholar 

  36. M. Micoulaut, R. Vuilleumier, C. Massobrio, Phys. Rev. B 79, 214205 (2009)

    Google Scholar 

  37. C. Massobrio, Lect. Notes Phys. 795, 343 (2010)

    Google Scholar 

  38. C. Massobrio, M. Micoulaut, P.S. Salmon, Solid State Sci. 12, 199 (2010)

    Google Scholar 

  39. M. Micoulaut, S. Le Roux, C. Massobrio, J. Chem. Phys. 136, 224504 (2012)

    Google Scholar 

  40. A. Bouzid, C. Massobrio, J. Chem. Phys. 137, 046101 (2012)

    Google Scholar 

  41. Y. Liang, C.R. Miranda, S. Scandolo, High Press. Res. 28, 35 (2008)

    Google Scholar 

  42. C. Massobrio, M. Celino, P.S. Salmon, R.A. Martin, M. Micoulaut, A. Pasquarello, Phys. Rev. B 79, 174201 (2009)

    Google Scholar 

  43. D. Marrocchelli, M. Salanne, P.A. Madden, J. Phys.: Condens. Matter 22, 152102 (2010)

    Google Scholar 

  44. H.E. Fischer, A.C. Barnes, P.S. Salmon, Rep. Prog. Phys. 69, 233 (2006)

    Google Scholar 

  45. T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153 (1965)

    Google Scholar 

  46. J.E. Enderby, D.M. North, P.A. Egelstaff, Philos. Mag. 14, 961 (1966)

    Google Scholar 

  47. P.S. Salmon, A. Zeidler, Phys. Chem. Chem. Phys. 15, 15286 (2013)

    Google Scholar 

  48. A.B. Bhatia, D.E. Thornton, Phys. Rev. B 2, 3004 (1970)

    Google Scholar 

  49. E. Lorch, J. Phys. C: Solid State Phys. 2, 229 (1969)

    Google Scholar 

  50. P.S. Salmon, J. Phys.: Condens. Matter 18, 11443 (2006)

    Google Scholar 

  51. F.G. Edwards, R.A. Howe, J.E. Enderby, D.I. Page, J. Phys. C: Solid State Phys. 11, 1053 (1978)

    Google Scholar 

  52. R.L. McGreevy, E.W.J. Mitchell, J. Phys. C: Solid State Phys. 15, 5537 (1982)

    Google Scholar 

  53. S. Biggin, J.E. Enderby, J. Phys. C: Solid State Phys. 14, 3577 (1981)

    Google Scholar 

  54. S. Biggin, M. Gay, J.E. Enderby, J. Phys. C: Solid State Phys. 17, 977 (1984)

    Google Scholar 

  55. R.J. Newport, R.A. Howe, N.D. Wood, J. Phys. C: Solid State Phys. 18, 5249 (1985)

    Google Scholar 

  56. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  57. P.S. Salmon, Proc. R. Soc. Lond. A 445, 351 (1994)

    Google Scholar 

  58. P.S. Salmon, Proc. R. Soc. Lond. A 437, 591 (1992)

    Google Scholar 

  59. P.S. Salmon, J. Phys.: Condens. Matter 19, 455208 (2007)

    Google Scholar 

  60. J.E. Enderby, A.C. Barnes, Rep. Prog. Phys. 53, 85 (1990)

    Google Scholar 

  61. M. Wilson, P.S. Salmon, Phys. Rev. Lett. 103, 157801 (2009)

    Google Scholar 

  62. M. Wilson, P.A. Madden, Phys. Rev. Lett. 80, 532 (1998)

    Google Scholar 

  63. B.K. Sharma, M. Wilson, J. Phys.: Condens. Matter 20, 244123 (2008)

    Google Scholar 

  64. P.S. Salmon, J. Phys.: Condens. Matter 17, S3537 (2005)

    Google Scholar 

  65. P.S. Salmon, A.C. Barnes, R.A. Martin, G.J. Cuello, Phys. Rev. Lett. 96, 235502 (2006)

    Google Scholar 

  66. M.J.L. Sangster, M. Dixon, Adv. Phys. 25, 247 (1976)

    Google Scholar 

  67. N.C. Pyper, in Advances in Solid State Chemistry, vol. 2, ed. by C.R.A. Catlow (JAI Press, London, 1991), p. 223

    Google Scholar 

  68. R. Kjellander, B. Forsberg, J. Phys. A: Math. Gen. 38, 5405 (2005)

    Google Scholar 

  69. R. Evans, R.J.F. Leote de Carvalho, J.R. Henderson, D.C. Hoyle, J. Chem. Phys. 100, 591 (1994)

    Google Scholar 

  70. R.J.F. Leote de Carvalho, R. Evans, Mol. Phys. 83, 619 (1994)

    Google Scholar 

  71. C. Grodon, M. Dijkstra, R. Evans, R. Roth, J. Chem. Phys. 121, 7869 (2004)

    Google Scholar 

  72. C.A. Angell, Science 267, 1924 (1995)

    Google Scholar 

  73. V.N. Novikov, Y. Ding, A.P. Sokolov, Phys. Rev. E 71, 061501 (2005)

    Google Scholar 

  74. J. Málek, J. Shánělová, J. Non-Cryst. Solids 243, 116 (1999)

    Google Scholar 

  75. E.A. Pavlatou, S.N. Yannopoulos, G.N. Papatheodorou, G. Fytas, J. Phys. Chem. B 101, 8748 (1997)

    Google Scholar 

  76. J. Ruska, H. Thurn, J. Non-Cryst. Solids 22, 277 (1976)

    Google Scholar 

  77. J.A.E. Desa, A.C. Wright, J. Wong, R.N. Sinclair, J. Non-Cryst. Solids 51, 57 (1982)

    Google Scholar 

  78. J. Neuefeind, K.-D. Liss, Ber. Bunsenges. Phys. Chem. 100, 1341 (1996)

    Google Scholar 

  79. A. Zeidler, J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, W.A. Crichton, S. Klotz, H.E. Fischer, C.J. Benmore, S. Ramos, A.C. Hannon, J. Phys.: Condens. Matter 21, 474217 (2009)

    Google Scholar 

  80. P.S. Salmon, J. Non-Cryst. Solids 353, 2959 (2007)

    Google Scholar 

  81. G. Dittmar, H. Schäfer, Acta Crystallogr. B 32, 2726 (1976)

    Google Scholar 

  82. S.B. Mamedov, N.D. Aksenov, L.L. Makarov, Yu.F. Batrakov, J. Non-Cryst. Solids 195, 272 (1996)

    Google Scholar 

  83. P. Boolchand, W.J. Bresser, Philos. Mag. B 80, 1757 (2000)

    Google Scholar 

  84. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Google Scholar 

  85. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  86. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  87. K. Wezka, A. Bouzid, K.J. Pizzey, P.S. Salmon, A. Zeidler, S. Klotz, H.E. Fischer, C.L. Bull, M.G. Tucker, M. Boero, S. Le Roux, C. Tugène, C. Massobrio, Phys. Rev. B 90, 054206 (2014)

    Google Scholar 

  88. L. Giacomazzi, C. Massobrio, A. Pasquarello, Phys. Rev. B 75, 174207 (2007)

    Google Scholar 

  89. L. Giacomazzi, C. Massobrio, A. Pasquarello, J. Phys.: Condens. Matter 23, 295401 (2011)

    Google Scholar 

  90. P. Vashishta, R.K. Kalia, G.A. Antonio, I. Ebbsjö, Phys. Rev. Lett. 62, 1651 (1989)

    Google Scholar 

  91. P. Vashishta, R.K. Kalia, I. Ebbsjö, Phys. Rev. B 39, 6034 (1989)

    Google Scholar 

  92. H. Iyetomi, P. Vashishta, R.K. Kalia, Phys. Rev. B 43, 1726 (1991)

    Google Scholar 

  93. P. Vashishta, R.K. Kalia, J.P. Rino, I. Ebbsjö, Phys. Rev. B 41, 12197 (1990)

    Google Scholar 

  94. B.K. Sharma, M. Wilson, Phys. Rev. B 73, 060201(R) (2006)

    Google Scholar 

  95. S.N. Yannopoulos, A.G. Kalampounias, A. Chrissanthopoulos, G.N. Papatheodorou, J. Chem. Phys. 118, 3197 (2003)

    Google Scholar 

  96. M. Celino, C. Massobrio, Phys. Rev. Lett. 90, 125502 (2003)

    Google Scholar 

  97. Q. Mei, C.J. Benmore, S. Sen, R. Sharma, J.L. Yarger, Phys. Rev. B. 78, 144204 (2008)

    Google Scholar 

  98. G.N. Greaves, S. Sen, Adv. Phys. 56, 1 (2007)

    Google Scholar 

  99. P.S. Salmon, A.C. Barnes, R.A. Martin, G.J. Cuello, J. Phys.: Condens. Matter 19, 415110 (2007)

    Google Scholar 

  100. L. Giacomazzi, P. Umari, A. Pasquarello, Phys. Rev. B 74, 155208 (2006)

    Google Scholar 

  101. M. Wilson, B.K. Sharma, J. Chem. Phys. 128, 214507 (2008)

    Google Scholar 

  102. V.V. Brazhkin, A.G. Lyapin, J. Phys.: Condens. Matter 15, 6059 (2003)

    Google Scholar 

  103. M.C. Wilding, M. Wilson, P.F. McMillan, Chem. Soc. Rev. 35, 964 (2006)

    Google Scholar 

  104. G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q. Vu Van, O. Majérus, C.J. Benmore, R. Weber, C.M. Martin, L. Hennet, Science 322, 566 (2008)

    Google Scholar 

  105. A.C. Barnes, L.B. Skinner, P.S. Salmon, A. Bytchkov, I. Pozdnyakova, T.O. Farmer, H.E. Fischer, Phys. Rev. Lett. 103, 225702 (2009)

    Google Scholar 

  106. A.C. Barnes, L.B. Skinner, P.S. Salmon, A. Bytchkov, I. Pozdnyakova, T.O. Farmer, H.E. Fischer, Phys. Rev. Lett. 106, 119602 (2011)

    Google Scholar 

  107. D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R.Q. Cabrera, M. Wilson, P.F. McMillan, J. Phys. Chem. B 115, 14246 (2011)

    Google Scholar 

  108. C.S. Marians, L.W. Hobbs, J. Non-Cryst, Solids 124, 242 (1990)

    Google Scholar 

  109. K. Wezka, P.S. Salmon, A. Zeidler, D.A.J. Whittaker, J.W.E. Drewitt, S. Klotz, H.E. Fischer, D. Marrocchelli, J. Phys.: Condens. Matter 24, 502101 (2012)

    Google Scholar 

  110. J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, S. Klotz, H.E. Fischer, W.A. Crichton, Phys. Rev. B 81, 014202 (2010)

    Google Scholar 

  111. P.S. Salmon, J.W.E Drewitt, D.A.J. Whittaker, A. Zeidler, K. Wezka, C.L. Bull, M.G. Tucker, M.C. Wilding, M. Guthrie, D. Marrocchelli, J. Phys.: Condens. Matter 24, 415102 (2012)

    Google Scholar 

  112. J.D. Jorgensen, J. Appl. Phys. 49, 5473 (1978)

    Google Scholar 

  113. J. Glinnemann, H.E. King Jr, H. Schulz, Th. Hahn, S.J. La Placa, F. Dacol, Z. Kristallogr. 198, 177 (1992)

    Google Scholar 

  114. X. Hong, G. Shen, V.B. Prakapenka, M. Newville, M.L. Rivers, S.R. Sutton, Phys. Rev. B 75, 104201 (2007)

    Google Scholar 

  115. D. Marrocchelli, M. Salanne, P.A. Madden, C. Simon, P. Turq, Mol. Phys. 107, 443 (2009)

    Google Scholar 

  116. G. Lelong, L. Cormier, G. Ferlat, V. Giordano, G.S. Henderson, A. Shukla, G. Calas, Phys. Rev. B 85, 134202 (2012)

    Google Scholar 

  117. R.D. Oeffner, S.R. Elliott, Phys. Rev. B 58, 14791 (1998)

    Google Scholar 

  118. M. Micoulaut, J. Phys.: Condens. Matter 16, L131 (2004)

    Google Scholar 

  119. M. Micoulaut, Y. Guissani, B. Guillot, Phys. Rev. E 73, 031504 (2006)

    Google Scholar 

  120. K.V. Shanavas, N. Garg, S.M. Sharma, Phys. Rev. B 73, 094120 (2006)

    Google Scholar 

  121. M. Micoulaut, X. Yuan, L.W. Hobbs, J. Non-Cryst. Solids 353, 1961 (2007)

    Google Scholar 

  122. T. Li, S. Huang, J. Zhu, Chem. Phys. Lett. 471, 253 (2009)

    Google Scholar 

  123. X.F. Zhu, L.F. Chen, Phys. B 404, 4178 (2009)

    Google Scholar 

  124. J.D. Martin, S.J. Goettler, N. Fossé, L. Iton, Nature 419, 381 (2002)

    Google Scholar 

  125. P.S. Salmon, Nat. Mater. 1, 87 (2002)

    Google Scholar 

  126. M.M. Smedskjaer, J.C. Mauro, S. Sen, Y. Yue, Chem. Mater. 22, 5358 (2010)

    Google Scholar 

  127. A. Feltz, in Physics of Disordered Materials, ed. by D. Adler, H. Fritzche, S.R. Ovshinsky (Plenum, New York, 1985), p. 203

    Google Scholar 

  128. A. Feltz, Amorphous Inorganic Materials and Glasses (VCH, Weinheim, 1993), p. 97

    Google Scholar 

  129. P. Boolchand, J. Grothaus, W.J. Bresser, P. Suranyi, Phys. Rev. B 25, 2975 (1982)

    Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank everyone who has contributed towards the experimental programme of research at Bath and UEA into the nature of network glass-forming materials, including Ian Penfold, Chris Benmore, Paul Lond, Erol Okan, Jian Liu, Shuqin Xin, Jonathan Wasse, Takeshi Usuki, Ingrid Petri, Richard Martin, James Drewitt, Prae Chirawatkul, Dean Whittaker, Kamil Wezka, Keiron Pizzey, Ruth Rowlands, Annalisa Polidori and Harry Bone. Special thanks also go to Adrian Barnes (Bristol), Pierre Chieux (ILL), Wilson Crichton (ESRF), Gabriel Cuello (ILL), Henry Fischer (ILL) and Stefan Klotz (Paris) for their contributions to the experimental work; and to Mauro Boero (Strasbourg), Assil Bouzid (Strasbourg), Sébastien Le Roux (Strasbourg), Dario Marrocchelli (MIT), Carlo Massobrio (Strasbourg), Matthieu Micoulaut (Paris), Alfredo Pasquarello (Lausanne) and Mark Wilson (Oxford) for all their contributions on the molecular dynamics front. The latter are also thanked for agreeing to a close dialogue with the experimental teams, where the feedback has been mutually beneficial in helping to decode the complexity of network glass-forming materials, and has also led to a fuller appreciation of both the advantages and limitations of experimental versus molecular dynamics methods. The support of the EPSRC (Grant: EP/J009741/1) and Institut Laue-Langevin (ILL) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Salmon .

Editor information

Editors and Affiliations

Appendix: Concentration of Defects in GeSe\(_2\) Glass from the Law of Mass Action

Appendix: Concentration of Defects in GeSe\(_2\) Glass from the Law of Mass Action

Following Feltz [127, 128], consider the reversible reaction

$$\begin{aligned} \mathrm{2Ge}{-}\mathrm{Se} \rightleftharpoons \mathrm{Ge}{-}\mathrm{Ge} + \mathrm{Se}{-}\mathrm{Se} \end{aligned}$$
(1.18)

where homopolar or defect bonds are formed in pairs, and for which the law of mass action gives an equilibrium constant

$$\begin{aligned} K = \frac{\left[ \mathrm{Ge}{-}\mathrm{Ge}\right] \left[ \mathrm{Se}{-}\mathrm{Se}\right] }{\left[ \mathrm{Ge}{-}\mathrm{Se}\right] ^2} = \exp \left( -\frac{\varDelta G}{\mathrm{R}T}\right) \end{aligned}$$
(1.19)

where \(\left[ \mathrm{A}{-}\mathrm{B}\right] \) represents the concentration of A\(-\)B bonds, \(\varDelta G\) is the standard reaction Gibbs energy, R is the molar gas constant, and \(T\) is the absolute temperature. From (1.18) it follows that the concentration of Ge\(-\)Ge or Se\(-\)Se defect bonds \(n_d\) = \(\left[ \mathrm{Ge}{-}\mathrm{Ge}\right] \) = \(\left[ \mathrm{Se}{-}\mathrm{Se}\right] \) where the Ge\(-\)Ge homopolar bonds might be in ethane-like Se\(_{3/2}\)Ge\(-\)GeSe\(_{3/2}\) units as suggested by \(^{119}\)Sn Mössbauer spectroscopy experiments [83, 129] and the Se\(-\)Se homopolar bonds might be in dimers linking Ge-centred tetrahedra. Equation (1.19) can therefore be re-written as

$$\begin{aligned} \frac{n_d}{n_0} = \exp \left( -\frac{\varDelta G}{2\mathrm{R}T}\right) \end{aligned}$$
(1.20)

where \(n_0 \equiv \left[ \mathrm{Ge}{-}\mathrm{Se}\right] \). If the concentration of defects is small such that \(n_d \ll n_0\) then the latter is approximately equal to the concentration of Ge\(-\)Se bonds in a non-defected system.

\(\varDelta G\) can be estimated from the difference between the Ge\(-\)Se, Ge\(-\)Ge and Se\(-\)Se bond enthalpies which take values of 225, 188 and 227 kJ mol\(^{-1}\), respectively, at 298 K i.e. \(\varDelta G \simeq \varDelta H\) = 2\(\times \)225 \(-\) 188 \(-\) 227 = 35 kJ mol\(^{-1}\) [127]. Hence, an estimate for the fraction of defects in the melt at the glass transition temperature (\(T_g\) = 665 K) is given by \(n_d/n_0 \simeq \) 0.042. Alternatively, if \(n_d \equiv N_d/V\) and \(n_0 \equiv N_\mathrm{bond}/V\), where \(N_d\) is the number of Ge\(-\)Ge or Se\(-\)Se homopolar bonds and \(N_\mathrm{bond}\) is the total number of bonds, it follows that \(N_d/N_\mathrm{bond} \simeq \) 0.042. This ratio is probably a lower limit because the value of \(\varDelta G\) used in the calculation is likely to decrease when the entropy term \(\varDelta S\) is taken into account (\(\varDelta G = \varDelta H - T\varDelta S\) if the absolute temperature \(T\) is constant), and the reaction enthalpy \(\varDelta H\) is likely to be smaller at \(T_g\) as compared to room temperature [127, 128].

Let the total number of atoms in the system be denoted by \(N = N_\mathrm{Ge} + N_\mathrm{Se}\) where \(N_\mathrm{Ge}\) and \(N_\mathrm{Se}\) are the numbers of Ge and Se atoms, respectively, such that the atomic fractions are given by \(c_\mathrm{Ge} = N_\mathrm{Ge}/N\) and \(c_\mathrm{Se} = N_\mathrm{Se}/N\). From the NDIS results on GeSe\(_2\) glass [22, 23], the coordination number for Ge\(-\)Ge homopolar bonds \(\bar{n}_\mathrm{Ge}^\mathrm{Ge}\) = 0.25(5). If these bonds form only in pairs then \(\bar{n}_\mathrm{Ge}^\mathrm{Ge} = \left( N_\mathrm{Ge, homo} \times 1\right) /N_\mathrm{Ge}\) such that the number of Ge\(-\)Ge bonds is given by \(N_\mathrm{Ge{-}Ge} = \left( \bar{n}_\mathrm{Ge}^\mathrm{Ge} \times N_\mathrm{Ge}\right) /2\) where the factor of two avoids double counting and \(N_\mathrm{Ge} = N/3\). It follows that \(N_\mathrm{Ge{-}Ge}\) = 0.042(8)\(N\). Similarly, from the NDIS results the coordination number for Se\(-\)Se homopolar bonds \(\bar{n}_\mathrm{Se}^\mathrm{Se}\) = 0.20(5). If these bonds form only in pairs then \(\bar{n}_\mathrm{Se}^\mathrm{Se} = \left( N_\mathrm{Se, homo} \times 1\right) /N_\mathrm{Se}\) such that the number of Se\(-\)Se bonds is given by \(N_\mathrm{Se{-}Se} = \left( \bar{n}_\mathrm{Se}^\mathrm{Se} \times N_\mathrm{Se}\right) /2\) where the factor of two avoids double counting and \(N_\mathrm{Se} = 2N/3\). It follows that \(N_\mathrm{Se{-}Se}\) = 0.067(17)\(N\). Thus, within the experimental error, \(N_\mathrm{Ge{-}Ge} \sim N_\mathrm{Se{-}Se}\) as in the model of Feltz [127] such that \(N_d \simeq \left( N_\mathrm{Ge{-}Ge} + N_\mathrm{Se{-}Se}\right) /2\) = 0.05(2)\(N\).

For GeSe\(_2\), the number of Ge\(-\)Se bonds in a non-defected system \(N_\mathrm{bond}\) \(=\) \((N_\mathrm{Ge}Z_\mathrm{Ge}\) \(+\) \(N_\mathrm{Se}Z_\mathrm{Se})/2\) = \(\left( c_\mathrm{Ge}Z_\mathrm{Ge} + c_\mathrm{Se}Z_\mathrm{Se}\right) N/2\) where \(Z_\alpha \) is the number of bonds formed by chemical species \(\alpha \). Since \(Z_\mathrm{Ge}\) = 4, \(Z_\mathrm{Se}\) = 2, \(c_\mathrm{Ge}\) = 1/3, \(c_\mathrm{Se}\) = 2/3 it follows that \(N_\mathrm{bond}\) = \(4N/3\). Thus \(N_d/N_\mathrm{bond} \simeq \) 0.04(2) for the NDIS results, which is in agreement with the value \(N_d/N_\mathrm{bond} \simeq \) 0.042 estimated by using the law of mass action.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salmon, P.S., Zeidler, A. (2015). The Atomic-Scale Structure of Network Glass-Forming Materials. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_1

Download citation

Publish with us

Policies and ethics