Skip to main content

Quantum Hall Effect and the Resistance Standard

  • Chapter
  • First Online:
Introduction to Quantum Metrology
  • 1727 Accesses

Abstract

This chapter opens with a presentation of the classical Drude theory of electrical conduction and a theory proposed by Landauer. Based on the assumption that electrical conduction can be modeled as transfer of electrons between two electron reservoirs, the Landauer theory proves to describe particularly well the electrical resistance in nanoscale conductors, i.e., in nanostructures. Surprisingly, this theory implies that the conductance (and resistance) of a nanostructure is independent of its material and temperature, and only depends on the dimensions of the sample, changing in a stepwise manner with a step of h/2e 2 representing the conductance quantum. The quantization of electrical and thermal conductance in nanostructures has been verified experimentally. Conductance quantization in nanostructures is used in the analysis of large-scale integration circuits, as required by the currently used 14 nm technology and future technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Delahaye, T.J. Witt, B. Jeckelmann, B. Jeanneret, Comparison of quantum Hall effect resistance standards of the OFMET and BIPM. Metrologia 32, 385–388 (1996)

    Google Scholar 

  2. F. Delahaye, T.J. Witt, R.E. Elmquist, R.F. Dziuba, Comparison of quantum Hall effect resistance standards of the NIST and the BIPM. Metrologia 37, 173–176 (2000)

    Article  ADS  Google Scholar 

  3. D.C. Elias et al., Control of grapheme`s properties by reversible hydrogenation. Science 323, 610–613 (2009)

    Article  ADS  Google Scholar 

  4. A. Hartland, The quantum Hall effect and resistance standards. Metrologia 29, 175–190 (1992)

    Article  ADS  Google Scholar 

  5. H. Ibach, H. Lüth, Solid-State Physics. An Introduction to Principles of Materials Science (Springer, Heidelberg, 1995)

    Google Scholar 

  6. R.B. Laughlin, Ułamkowe kwantowanie, Wykład Noblowski, Postępy Fizyki. 51, 68–84 (2000)

    Google Scholar 

  7. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  8. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene, Science 315, 1379 (2007)

    Google Scholar 

  9. T. Oe et al., Fabrication of the 10 kΩ QHR Array device, Elektronika, No 6/2011, 47–49

    Google Scholar 

  10. H.L. Störmer, Ułamkowy kwantowy efekt Halla. Wykład Noblowski, Postępy Fizyki 51, 113–133 (2000)

    Google Scholar 

  11. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of fine-structure contact based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  12. H. Wang, D. Nezich, J. Kong, T. Palacios, Graphene frequency multipliers. IEEE Electron Device Lett. 30, 547–549 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Nawrocki .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nawrocki, W. (2015). Quantum Hall Effect and the Resistance Standard. In: Introduction to Quantum Metrology. Springer, Cham. https://doi.org/10.1007/978-3-319-15669-9_6

Download citation

Publish with us

Policies and ethics