Quantum Voltage Standards



In this chapter we focus on superconductivity and superconducting materials. We discuss the discovery of high-temperature (HTc) superconductors and provide an overview of HTc superconducting materials. We present the construction of four types of Josephson junction and derive the relations that describe the Josephson effect. We discuss the design of the classical electrochemical standards of direct voltage and standards with Josephson junctions. The parameters of the standards are compared, and the advantages of the quantum standards with Josephson junctions described. Also provided are the results of a comparison of the quantum standard at the Polish Central Office of Measures with the BIPM standard. We present the design of two types of alternating-voltage standards with Josephson junctions: binary divided junction arrays and pulse-driven junction arrays. Also presented are the principles of operation of the memory cell and flip-flop, basic components in digital cryoelectronics.


Magnetic Flux Josephson Junction Cooper Pair Terahertz Radiation Josephson Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Bednorz, K.A. Müller, Supraleitung in LaBaCuO in 36 K. Z. Phys. B64, 189–193 (1986)CrossRefADSGoogle Scholar
  2. 2.
    R. Behr et al., Development and metrological applications of Josephson arrays at PTB. Meas. Sci. Technol. 23, 124002 (2012)Google Scholar
  3. 3.
    S.P. Benz, C.A. Hamilton, A pule-driven programmable Josephson voltage standard. Appl. Phys. Lett. 68, 3171–3173 (1996)CrossRefADSGoogle Scholar
  4. 4.
    W. Chen et al., Rapid single flux quantum T-flip-flop operating at 770 GHz. IEEE Trans. Appl. Supercond. 8, 3212–3215 (1998)Google Scholar
  5. 5.
    J. Clarke, Experimental comparison on the Josephson voltage-frequency relation in different superconductors. Phys. Rev. Lett. 21, 1566–1569 (1968)CrossRefADSGoogle Scholar
  6. 6.
    M. Cyrot, D. Pavuna, Introduction to Superconductivity and High Tc Materials (World Scientific, Singapore, 1992)Google Scholar
  7. 7.
    Documentation of the RMC Josephson standard, 1998Google Scholar
  8. 8.
    T. Endo, M. Koyanagi, A. Nakamura, High accuracy Josephson potentiometer. IEEE Trans. Instrum. Meas. IM-32, 267–271 (1983)Google Scholar
  9. 9.
    D. Gupta, Y. Zhang, On-chip clock technology for ultrafast digital superconducting electronics. J. Appl. Phys. 76, 3819–3821 (2000)Google Scholar
  10. 10.
    C.A. Hamilton et al., A 24-GHz Josephson array voltage standard. IEEE Trans. Instrum. Meas. IM-40, 301–304 (1991)Google Scholar
  11. 11.
    C.A. Hamilton, Josephson voltage standards. Rev. Sci Instrum. 71, 3611–3623 (2000)CrossRefADSGoogle Scholar
  12. 12.
    HYPRES Design Rules, Internet resources:
  13. 13.
    T. Jaw-Shen, A.K. Jain, J.E. Lukens, High-precision test of the universality of the Josephson voltage-frequency relation. Phys. Rev. Lett. 51, 316–319 (1983)Google Scholar
  14. 14.
    B.D. Josephson, Possible new effects in superconducting tunneling. Phys. Lett. 1, 251–263 (1962)CrossRefADSzbMATHGoogle Scholar
  15. 15.
    R.L. Kautz, L. Lloyd, Precision of series-array Josephson voltage standards. Appl. Phys. Lett. 51, 2043–2045 (1987)CrossRefADSGoogle Scholar
  16. 16.
    M.T. Levinson et al., An inverse ac Josephson effect voltage standard. Appl. Phys. Lett. 31, 776–778 (1977)CrossRefADSGoogle Scholar
  17. 17.
    K.K. Likharev, Superconductors speed up computation. Phys. World 10, 39 (1997)Google Scholar
  18. 18.
    K.K. Likharev, O.A. Mukhanov, V.K. Semenov, Ultimate performance of RSFQ logic circuits. IEEE Trans. Magn. 23, 759–762 (1987)CrossRefADSGoogle Scholar
  19. 19.
    K.K. Likharev, Superconductor devices for ultrafast computing, Section 5 in Applications of Superconductivity, ed. by H. Weinstock, NATO ASI Series (Kluwer, Dordrecht, 2000), pp. 247–293Google Scholar
  20. 20.
    D.E. McCumber, Effect of ac impedance on dc-voltage-current characteristics of Josephson junctions. J. Appl. Phys. 39 3113–3118 (1968)CrossRefADSGoogle Scholar
  21. 21.
    J. Niemayer, L. Grimm, C.A. Hamilton, R.L. Steiner, High-precision measurement of a possible resistive slope of Josephson array voltage steps. IEEE Electron. Dev. Lett. 7, 44–46 (1986)CrossRefGoogle Scholar
  22. 22.
    L. Ozyuzer et al., Emission of THz coherent radiation from superconductors. Science 318, 1291–1293 (2007)Google Scholar
  23. 23.
    W.H. Parker et al., Determination of e/h using macroscopic quantum phase coherence in superconductors. Phys. Rev. 177, 639–664 (1969)CrossRefADSGoogle Scholar
  24. 24.
    B.W. Petley, Quantum Metrology and Fundamental Constants, ed. by P.H. Cutler, A.A. Lucas (Plenum, New York, 1983)Google Scholar
  25. 25.
    T. Quinn, New from BIPM. Metrologia 39, 117 (2002)ADSGoogle Scholar
  26. 26.
    D. Reymann, T.J. Witt, J. Balmisa, P. Castejon, S. Perez, Comparisons of the Josephson voltage standards of the CEM and the BIPM. Metrologia 36, 59–62 (1999)CrossRefADSGoogle Scholar
  27. 27.
    M. Shukrinv Yu et al., Phase dynamics of two parallel stacks of coupled Josephson junctions. Supercond. Sci. Technol. 27, 124007 (2014)Google Scholar
  28. 28.
    D. Sochocka, W. Nawrocki, Quantum voltage standard at central office of measures (in Polish). Elektronika 11/42, 15–18 (2001)Google Scholar
  29. 29.
    The International Roadmap for Semiconductors 2013, Internet resources:
  30. 30.
    T. van Dutzer, G. Lee, Digital signal processing, in Superconducting Devices, ed. by S.T. Ruggiero, D.A. Rudman (Academic Press, New York, 1990)Google Scholar
  31. 31.
    C.M. Wang, C.A. Hamilton, The fourth interlaboratory comparison of 10 V Josephson voltage standards in North America. Metrologia 35, 33–40 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Electronics and TelecommunicationsPoznan University of TechnologyPoznanPoland

Personalised recommendations