Skip to main content

Abstract

Neurodegenerative diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD) are major health problems, and a growing recognition exists that efforts to prevent them must be undertaken by both governmental and nongovernmental organizations. In this context, the pineal product melatonin has a promising significance because of its chronobiotic/cytoprotective properties. One of the features of advancing age is the gradual decrease in endogenous melatonin synthesis. A limited number of therapeutic trials have indicated that melatonin has a potential therapeutic value as a neuroprotective drug in the treatment of AD, minimal cognitive impairment (which may evolve to AD), and PD. Both in vitro and in vivo, melatonin prevented the neurodegeneration seen in experimental models of AD and PD. For these effects to occur, doses of melatonin about two orders of magnitude higher than those required to affect sleep and circadian rhythmicity are needed. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50–100 mg/day are needed to assess its therapeutic validity in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

Ach:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

AFMK:

N 1-Acetyl-N 2-formyl-5-methoxykynuramine

AMK:

N 1-Acetyl-5-methoxykynuramine

APP:

Amyloid precursor protein

Aβ:

Aggregated β-amyloid

Bcl-2:

B cell lymphoma proto-oncogene protein

ChAT:

Choline acetyltransferase

Cox:

Cyclooxygenase

DA:

Dopamine

GABA:

γ-Aminobutyric acid

GPR50:

G-protein receptor 50 ortholog

GPx:

Glutathione peroxidase

GRd:

Glutathione reductase

GSH:

Reduced glutathione

GSK–3:

Glycogen synthase kinase-3

iNOS:

Inducible nitric oxide synthase

l-DOPA:

l-Dihydroxyphenylalanine

MAO:

Monoamine oxidase

MAP:

Microtubule-associated protein

MCI:

Mild cognitive impairment

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mPTP:

Mitochondrial permeability transition pore

mRNA:

Messenger ribonucleic acid

MT1 :

Melatonin receptor 1

MT2 :

Melatonin receptor 2

MT3 :

Melatonin receptor 3

NF κB:

Nuclear factor κB

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PD:

Parkinson’s disease

PK:

Protein kinase

RBD:

REM-associated sleep behavior disorder

REM:

Rapid eye movement

RNS:

Reactive nitrogen species

ROR:

Retinoic acid receptor-related orphan receptor

ROS:

Reactive oxygen species

RZR:

Retinoid Z receptor

SCN:

Suprachiasmatic nuclei

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

References

  • Acuña-Castroviejo D, Coto-Montes A, Gaia MM, Ortiz GG, Reiter RJ (1997) Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 60:L23–L29

    Google Scholar 

  • Acuña-Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240

    PubMed  Google Scholar 

  • Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:BR61–BR67

    CAS  PubMed  Google Scholar 

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787

    CAS  PubMed  Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD et al (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  • Anderson KN, Shneerson JM (2009) Drug treatment of REM sleep behavior disorder: the use of drug therapies other than clonazepam. J Clin Sleep Med 5:235–239

    PubMed Central  PubMed  Google Scholar 

  • Anderson KN, Jamieson S, Graham AJ, Shneerson JM (2008) REM sleep behaviour disorder treated with melatonin in a patient with Alzheimer’s disease. Clin Neurol Neurosurg 110:492–495

    PubMed  Google Scholar 

  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  • Antolin I, Rodriguez C, Sainz RM, Mayo JC, Uria H, Kotler ML et al (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890

    CAS  PubMed  Google Scholar 

  • Antolin I, Mayo JC, Sainz RM, del Brio ML, Herrera F, Martin V et al (2002) Protective effect of melatonin in a chronic experimental model of Parkinson’s disease. Brain Res 943:163–173

    CAS  PubMed  Google Scholar 

  • Arends YM, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw JJ (2000) Microglia, amyloid and dementia in alzheimer disease. A correlative study. Neurobiol Aging 21:39–47

    CAS  PubMed  Google Scholar 

  • Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S (2003) Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 70:334–341

    PubMed  Google Scholar 

  • Aurora RN, Zak RS, Maganti RK, Auerbach SH, Casey KR, Chowdhuri S et al (2010) Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med 6:85–95

    PubMed Central  PubMed  Google Scholar 

  • Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J et al (2009) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117:613–634

    PubMed Central  PubMed  Google Scholar 

  • Beaulieu-Bonneau S, Hudon C (2009) Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr 21:654–666

    PubMed  Google Scholar 

  • Beck-Friis J, Kjellman BF, Aperia B, Unden F, von Rosen D, Ljunggren JG et al (1985) Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand 71:319–330

    CAS  PubMed  Google Scholar 

  • Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E (2004) Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappa B and AP-1. FASEB J 18:149–151

    CAS  PubMed  Google Scholar 

  • Benitez-King G, Rios A, Martinez A, Anton-Tay F (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1290:191–196

    PubMed  Google Scholar 

  • Benitez-King G, Tunez I, Bellon A, Ortiz GG, Anton-Tay F (2003) Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol 182:151–159

    CAS  PubMed  Google Scholar 

  • Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I (2004) The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 3:515–533

    CAS  PubMed  Google Scholar 

  • Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3):577–591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boeve BF, Silber MH, Ferman TJ (2003) Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med 4:281–284

    PubMed  Google Scholar 

  • Borah A, Mohanakumar KP (2009) Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J Pineal Res 47:293–300

    CAS  PubMed  Google Scholar 

  • Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C et al (2003) Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26:65–72

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Brion JP, Anderton BH, Authelet M, Dayanandan R, Leroy K, Lovestone S et al (2001) Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp 67:81–88

    Google Scholar 

  • Brito-Armas JM, Baekelandt V, Castro-Hernandez JR, Gonzalez-Hernandez T, Rodriguez M, Castro R (2013) Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histol Histopathol 28:999–1006

    CAS  PubMed  Google Scholar 

  • Brusco LI, Marquez M, Cardinali DP (1998a) Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol Lett 19:111–115

    CAS  Google Scholar 

  • Brusco LI, Marquez M, Cardinali DP (1998b) Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res 25:260–263

    CAS  PubMed  Google Scholar 

  • Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A et al (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50

    PubMed  Google Scholar 

  • Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62:13–19

    CAS  PubMed  Google Scholar 

  • Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L et al (2006) Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 332:385–393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cai Y, Liu S, Sothern RB, Xu S, Chan P (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 17:550–554

    CAS  PubMed  Google Scholar 

  • Cardinali DP, Lynch HJ, Wurtman RJ (1972) Binding of melatonin to human and rat plasma proteins. Endocrinology 91:1213–1218

    CAS  PubMed  Google Scholar 

  • Cardinali DP, Ritta MN, Fuentes AM, Gimeno MF, Gimeno AL (1980) Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations. Eur J Pharmacol 67:151–153

    CAS  PubMed  Google Scholar 

  • Cardinali DP, Brusco LI, Liberczuk C, Furio AM (2002) The use of melatonin in Alzheimer’s disease. Neuroendocrinol Lett 23(Suppl 1):20–23

    CAS  PubMed  Google Scholar 

  • Cardinali DP, Pandi-Perumal SR, Niles LP (2008) Melatonin and its receptors: biological function in circadian sleep-wake regulation. In: Monti JM, Pandi-Perumal SR, Sinton CM (eds) Neurochemistry of sleep and wakefulness. Cambridge University Press, Cambridge, pp 283–314

    Google Scholar 

  • Cardinali DP, Furio AM, Brusco LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8:218–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cardinali DP, Cano P, Jimenez-Ortega V, Esquifino AI (2011a) Melatonin and the metabolic syndrome. Physiopathologic and therapeutical implications. Neuroendocrinology 93:133–142

    CAS  PubMed  Google Scholar 

  • Cardinali DP, Furio AM, Brusco LI (2011b) The use of chronobiotics in the resynchronization of the sleep/wake cycle. Therapeutical application in the early phases of Alzheimer’s disease. Recent Patents Endocr Metab Immune Drug Discov 5:80–90

    CAS  Google Scholar 

  • Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012a) Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis 1:280–291

    PubMed Central  PubMed  Google Scholar 

  • Cardinali DP, Srinivasan V, Brzezinski A, Brown GM (2012b) Melatonin and its analogs in insomnia and depression. J Pineal Res 52:365–375

    CAS  PubMed  Google Scholar 

  • Carneiro RC, Reiter RJ (1998) Delta-aminolevulinic acid-induced lipid peroxidation in rat kidney and liver is attenuated by melatonin: an in vitro and in vivo study. J Pineal Res 24:131–136

    CAS  PubMed  Google Scholar 

  • Carta MG, Hardoy MC, Dell’Osso L, Carpiniello B (2004) Tardive dyskinesia: review of the literature. Clin Ter 155:127–133

    CAS  PubMed  Google Scholar 

  • Catala MD, Canete-Nicolas C, Iradi A, Tarazona PJ, Tormos JM, Pascual-Leone A (1997) Melatonin levels in Parkinson’s disease: drug therapy versus electrical stimulation of the internal globus pallidus. Exp Gerontol 32:553–558

    CAS  PubMed  Google Scholar 

  • Caumo W, Levandovski R, Hidalgo MP (2009) Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy: a double-blind, randomized, placebo-controlled study. J Pain 10:100–108

    CAS  PubMed  Google Scholar 

  • Cazzola R, Rondanelli M, Faliva M, Cestaro B (2012) Effects of DHA-phospholipids, melatonin and tryptophan supplementation on erythrocyte membrane physico-chemical properties in elderly patients suffering from mild cognitive impairment. Exp Gerontol 47:974–978

    CAS  PubMed  Google Scholar 

  • Chahbouni M, Escames G, Venegas C, Sevilla B, Garcia JA, Lopez LC et al (2010) Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res 48:282–289

    CAS  PubMed  Google Scholar 

  • Chan AS, Lai FP, Lo RK, Voyno-Yasenetskaya TA, Stanbridge EJ, Wong YH (2002) Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal 14:249–257

    CAS  PubMed  Google Scholar 

  • Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, Lin AM (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and alpha-synuclein aggregation. J Pineal Res 52:312–321

    CAS  PubMed  Google Scholar 

  • Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT (1997) Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res 755:335–338

    CAS  PubMed  Google Scholar 

  • Chuang JI, Mohan N, Meltz ML, Reiter RJ (1996) Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell Biol Int 20:687–692

    CAS  PubMed  Google Scholar 

  • Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24

    PubMed  Google Scholar 

  • Clay E, Falissard B, Moore N, Toumi M (2013) Contribution of prolonged-release melatonin and anti-benzodiazepine campaigns to the reduction of benzodiazepine and Z-drugs consumption in nine European countries. Eur J Clin Pharmacol 69:1–10

    PubMed Central  PubMed  Google Scholar 

  • Cochen V, Arbus C, Soto ME, Villars H, Tiberge M, Montemayor T et al (2009) Sleep disorders and their impacts on healthy, dependent, and frail older adults. J Nutr Health Aging 13:322–329

    CAS  PubMed  Google Scholar 

  • Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia – a preliminary study. Arch Gerontol Geriatr 31:65–76

    CAS  PubMed  Google Scholar 

  • Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costantino G, Cuzzocrea S, Mazzon E, Caputi AP (1998) Protective effects of melatonin in zymosan-activated plasma-induced paw inflammation. Eur J Pharmacol 363:57–63

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabo C (1997) Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res 23:106–116

    CAS  PubMed  Google Scholar 

  • Dagan Y, Zisapel N, Nof D, Laudon M, Atsmon J (1997) Rapid reversal of tolerance to benzodiazepine hypnotics by treatment with oral melatonin: a case report. Eur Neuropsychopharmacol 7:157–160

    CAS  PubMed  Google Scholar 

  • Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G et al (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38:1688–1693

    CAS  PubMed  Google Scholar 

  • de Jonghe A, Korevaar JC, van Munster BC, de Rooij SE (2010) Effectiveness of melatonin treatment on circadian rhythm disturbances in dementia. Are there implications for delirium? A systematic review. Int J Geriatr Psychiatry 25:1201–1208

    PubMed  Google Scholar 

  • Deng YQ, Xu GG, Duan P, Zhang Q, Wang JZ (2005) Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol Sin 26:519–526

    CAS  PubMed  Google Scholar 

  • Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A et al (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    CAS  PubMed  Google Scholar 

  • Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M (2013) Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 42:135–145

    CAS  PubMed  Google Scholar 

  • Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA et al (2008) Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem 283:4568–4577

    CAS  PubMed  Google Scholar 

  • Dowling GA, Mastick J, Colling E, Carter JH, Singer CM, Aminoff MJ (2005) Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med 6:459–466

    PubMed  Google Scholar 

  • Dowling GA, Burr RL, Van Someren EJ, Hubbard EM, Luxenberg JS, Mastick J et al (2008) Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 56:239–246

    PubMed Central  PubMed  Google Scholar 

  • Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M et al (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86

    CAS  PubMed  Google Scholar 

  • Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62:343–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erol FS, Topsakal C, Ozveren MF, Kaplan M, Ilhan N, Ozercan IH et al (2004) Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg Rev 27:65–69

    PubMed  Google Scholar 

  • Escames G, Acuña-Castroviejo D, Vives F (1996) Melatonin-dopamine interaction in the striatal projection area of sensorimotor cortex in the rat. Neuroreport 7:597–600

    CAS  PubMed  Google Scholar 

  • Escames G, Leon J, Lopez LC, Acuña-Castroviejo D (2004) Mechanisms of N-methyl-D-aspartate receptor inhibition by melatonin in the rat striatum. J Neuroendocrinol 16:929–935

    CAS  PubMed  Google Scholar 

  • Facciola G, Hidestrand M, von Bahr C, Tybring G (2001) Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol 56:881–888

    CAS  PubMed  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32:804–812

    CAS  PubMed  Google Scholar 

  • Fainstein I, Bonetto A, Brusco LI, Cardinali DP (1997) Effects of melatonin in elderly patients with sleep disturbance. A pilot study. Curr Ther Res 58:990–1000

    CAS  Google Scholar 

  • Farias ST, Mungas D, Reed BR, Harvey D, DeCarli C (2009) Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol 66:1151–1157

    PubMed Central  PubMed  Google Scholar 

  • Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C et al (2004a) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37:129–136

    CAS  PubMed  Google Scholar 

  • Feng Z, Cheng Y, Zhang JT (2004b) Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J Pineal Res 37:198–206

    CAS  PubMed  Google Scholar 

  • Fernandez-Bachiller MI, Perez C, Campillo NE, Paez JA, Gonzalez-Munoz GC, Usan P et al (2009) Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem 4:828–841

    CAS  PubMed  Google Scholar 

  • Fertl E, Auff E, Doppelbauer A, Waldhauser F (1993) Circadian secretion pattern of melatonin in de novo parkinsonian patients: evidence for phase-shifting properties of l-dopa. J Neural Transm Park Dis Dement Sect 5:227–234

    CAS  PubMed  Google Scholar 

  • Fornai F, Soldani P, Lazzeri G, di Poggio AB, Biagioni F, Fulceri F et al (2005) Neuronal inclusions in degenerative disorders: do they represent static features or a key to understand the dynamics of the disease? Brain Res Bull 65:275–290

    CAS  PubMed  Google Scholar 

  • Fotuhi M, Hachinski V, Whitehouse PJ (2009) Changing perspectives regarding late-life dementia. Nat Rev Neurol 5:649–658

    PubMed  Google Scholar 

  • Furio AM, Cutrera RA, Castillo TV, Perez LS, Riccio P, Caccuri RL et al (2002) Effect of melatonin on changes in locomotor activity rhythm of Syrian hamsters injected with beta amyloid peptide 25–35 in the suprachiasmatic nuclei. Cell Mol Neurobiol 22:699–709

    CAS  PubMed  Google Scholar 

  • Furio AM, Brusco LI, Cardinali DP (2007) Possible therapeutic value of melatonin in mild cognitive impairment. A retrospective study. J Pineal Res 43:404–409

    CAS  PubMed  Google Scholar 

  • Furio AM, Fontao R, Falco N, Ruiz JI, Caccuri RL, Cardinali DP (2008) Neuroprotective effect of melatonin on glucocorticoid toxicity in the rat hippocampus. Open Physiol J 1:23–27

    CAS  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    CAS  PubMed  Google Scholar 

  • Garfinkel D, Zisapel N, Wainstein J, Laudon M (1999) Facilitation of benzodiazepine discontinuation by melatonin: a new clinical approach. Arch Intern Med 159:2456–2460

    CAS  PubMed  Google Scholar 

  • Garzon C, Guerrero JM, Aramburu O, Guzman T (2009) Effect of melatonin administration on sleep, behavioral disorders and hypnotic drug discontinuation in the elderly: a randomized, double-blind, placebo-controlled study. Aging Clin Exp Res 21:38–42

    CAS  PubMed  Google Scholar 

  • Gehrman PR, Connor DJ, Martin JL, Shochat T, Corey-Bloom J, Ancoli-Israel S (2009) Melatonin fails to improve sleep or agitation in double-blind randomized placebo-controlled trial of institutionalized patients with Alzheimer disease. Am J Geriatr Psychiatry 17:166–169

    PubMed Central  PubMed  Google Scholar 

  • Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF (2010) Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta 1802:122–134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giusti P, Lipartiti M, Franceschini D, Schiavo N, Floreani M, Manev H (1996) Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J 10:891–896

    CAS  PubMed  Google Scholar 

  • Golombek DA, Pevet P, Cardinali DP (1996) Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci Biobehav Rev 20:403–412

    CAS  PubMed  Google Scholar 

  • Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71:863–870

    CAS  PubMed  Google Scholar 

  • Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA et al (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66

    PubMed  Google Scholar 

  • Guermonprez L, Ducrocq C, Gaudry-Talarmain YM (2001) Inhibition of acetylcholine synthesis and tyrosine nitration induced by peroxynitrite are differentially prevented by antioxidants. Mol Pharmacol 60:838–846

    CAS  PubMed  Google Scholar 

  • Harada S, Fujii C, Hayashi A, Ohkoshi N (2001) An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun 288:887–892

    CAS  PubMed  Google Scholar 

  • Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126

    CAS  PubMed  Google Scholar 

  • Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin – a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    CAS  PubMed  Google Scholar 

  • Harper DG, Stopa EG, McKee AC, Satlin A, Harlan PC, Goldstein R et al (2001) Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch Gen Psychiatry 58:353–360

    CAS  PubMed  Google Scholar 

  • Hartter S, Ursing C, Morita S, Tybring G, von Bahr C, Christensen M et al (2001) Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: a pilot study. Clin Pharmacol Ther 70:10–16

    CAS  PubMed  Google Scholar 

  • Herraiz T, Guillen H (2011) Inhibition of the bioactivation of the neurotoxin MPTP by antioxidants, redox agents and monoamine oxidase inhibitors. Food Chem Toxicol 49:1773–1781

    CAS  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  • Iqbal K, Alonso AC, Chen S, Chohan MO, El-Akkad E, Gong CX et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    CAS  PubMed  Google Scholar 

  • Jean-Louis G, Zizi F, von Gizycki H, Taub H (1998a) Effects of melatonin in two individuals with Alzheimer’s disease. Percept Mot Skills 87:331–339

    CAS  PubMed  Google Scholar 

  • Jean-Louis G, von Gizycki H, Zizi F (1998b) Melatonin effects on sleep, mood, and cognition in elderly with mild cognitive impairment. J Pineal Res 25:177–183

    CAS  PubMed  Google Scholar 

  • Jiao S, Wu MM, Hu CL, Zhang ZH, Mei YA (2004) Melatonin receptor agonist 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via K+ current inhibition. J Pineal Res 36:109–116

    CAS  PubMed  Google Scholar 

  • Jimenez-Ortega V, Cano P, Cardinali DP, Esquifino AI (2009) 24-Hour variation in gene expression of redox pathway enzymes in rat hypothalamus: effect of melatonin treatment. Redox Rep 14:132–138

    CAS  PubMed  Google Scholar 

  • Jimenez-Ortega V, Cano P, Scacchi PA, Cardinali DP, Esquifino AI (2011) Cadmium-induced disruption in 24-h expression of clock and redox enzyme genes in rat medial basal hypothalamus. Prevention by melatonin. Front Neurol (Sleep Chronobiol) 2:art13-1-19

    Google Scholar 

  • Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A, Scott TM et al (2013) Relationship between serum and brain carotenoids, alpha-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J Aging Res 2013:951786

    Google Scholar 

  • Jou MJ (2011) Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca2+ stress in astrocyte. J Pineal Res 50:427–435

    CAS  PubMed  Google Scholar 

  • Kabadi SV, Maher TJ (2010) Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann N Y Acad Sci 1199:105–113

    CAS  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    CAS  PubMed  Google Scholar 

  • Khandelwal N, Simpson J, Taylor G, Rafique S, Whitehouse A, Hiscox J et al (2011) Nucleolar NF-kappaB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ 18:1889–1903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 59:750–753

    CAS  PubMed  Google Scholar 

  • Kilanczyk E, Bryszewska M (2003) The effect of melatonin on antioxidant enzymes in human diabetic skin fibroblasts. Cell Mol Biol Lett 8:333–336

    CAS  PubMed  Google Scholar 

  • Kilic E, Ozdemir YG, Bolay H, Kelestimur H, Dalkara T (1999) Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab 19:511–516

    CAS  PubMed  Google Scholar 

  • Klaffke S, Staedt J (2006) Sundowning and circadian rhythm disorders in dementia. Acta Neurol Belg 106:168–175

    CAS  PubMed  Google Scholar 

  • Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2008) Melatonin inhibits amphetamine-induced increase in alpha-synuclein and decrease in phosphorylated tyrosine hydroxylase in SK-N-SH cells. Neurosci Lett 436:309–313

    CAS  PubMed  Google Scholar 

  • Koh PO (2011) Melatonin prevents down-regulation of astrocytic phosphoprotein PEA-15 in ischemic brain injury. J Pineal Res 51:381–386

    CAS  PubMed  Google Scholar 

  • Koller WC (1996) Management of motor fluctuations in Parkinson’s disease. Eur Neurol 36(Suppl 1):43–48

    PubMed  Google Scholar 

  • Kunz D, Bes F (1997) Melatonin effects in a patient with severe REM sleep behavior disorder: case report and theoretical considerations. Neuropsychobiology 36:211–214

    CAS  PubMed  Google Scholar 

  • Kunz D, Bes F (1999) Melatonin as a therapy in REM sleep behavior disorder patients: an open-labeled pilot study on the possible influence of melatonin on REM-sleep regulation. Mov Disord 14:507–511

    CAS  PubMed  Google Scholar 

  • Kunz D, Bineau S, Maman K, Milea D, Toumi M (2012) Benzodiazepine discontinuation with prolonged-release melatonin: hints from a German longitudinal prescription database. Expert Opin Pharmacother 13:9–16

    CAS  PubMed  Google Scholar 

  • Lahiri DK, Ghosh C (1999) Interactions between melatonin, reactive oxygen species, and nitric oxide. Ann N Y Acad Sci 893:325–330

    CAS  PubMed  Google Scholar 

  • Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH (2004) Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J Pineal Res 36:224–231

    CAS  PubMed  Google Scholar 

  • Lardone PJ, Guerrero JM, Fernandez-Santos JM, Rubio A, Martin-Lacave I, Carrillo-Vico A (2011) Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J Pineal Res 51:454–462

    CAS  PubMed  Google Scholar 

  • Lau WW, Ng JK, Lee MM, Chan AS, Wong YH (2012) Interleukin-6 autocrine signaling mediates melatonin MT1/2 receptor-induced STAT3 Tyr705 phosphorylation. J Pineal Res 52:477–489

    CAS  PubMed  Google Scholar 

  • Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI et al (2004) Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 36:33–42

    CAS  PubMed  Google Scholar 

  • Leger D, Laudon M, Zisapel N (2004) Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am J Med 116:91–95

    CAS  PubMed  Google Scholar 

  • Leon-Blanco MM, Guerrero JM, Reiter RJ, Pozo D (2004) RNA expression of human telomerase subunits TR and TERT is differentially affected by melatonin receptor agonists in the MCF-7 tumor cell line. Cancer Lett 216:73–80

    CAS  PubMed  Google Scholar 

  • Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P et al (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 25:3012–3023

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewy AJ, Sack RA, Singer CL (1984) Assessment and treatment of chronobiologic disorders using plasma melatonin levels and bright light exposure: the clock-gate model and the phase response curve. Psychopharmacol Bull 20:561–565

    CAS  PubMed  Google Scholar 

  • Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ (2004) Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res 36:186–191

    CAS  PubMed  Google Scholar 

  • Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ (2005) Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol 510:25–30

    CAS  PubMed  Google Scholar 

  • Lin AM, Fang SF, Chao PL, Yang CH (2007) Melatonin attenuates arsenite-induced apoptosis in rat brain: involvement of mitochondrial and endoplasmic reticulum pathways and aggregation of alpha-synuclein. J Pineal Res 43:163–171

    CAS  PubMed  Google Scholar 

  • Litvinenko IV, Krasakov IV, Tikhomirova OV (2012) Sleep disorders in Parkinson’s disease without dementia: a comparative randomized controlled study of melatonin and clonazepam. Zh Nevrol Psikhiatr Im S S Korsakova 112:26–30

    CAS  PubMed  Google Scholar 

  • Liu SJ, Wang JZ (2002) Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin 23:183–187

    CAS  PubMed  Google Scholar 

  • Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84:323–327

    CAS  PubMed  Google Scholar 

  • Louzada PR, Paula Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST (2004) Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518

    CAS  PubMed  Google Scholar 

  • Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR (2004) Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 6:659–671

    CAS  PubMed  Google Scholar 

  • Magri F, Locatelli M, Balza G, Molla G, Cuzzoni G, Fioravanti M et al (1997) Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol Int 14:385–396

    CAS  PubMed  Google Scholar 

  • Maguire-Zeiss KA, Federoff HJ (2010) Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease. J Neural Transm 117:1019–1025

    CAS  PubMed  Google Scholar 

  • Mahlberg R, Walther S (2007) Actigraphy in agitated patients with dementia. Monitoring treatment outcomes. Z Gerontol Geriatr 40:178–184

    CAS  PubMed  Google Scholar 

  • Mahlberg R, Kunz D, Sutej I, Kuhl KP, Hellweg R (2004) Melatonin treatment of day-night rhythm disturbances and sundowning in Alzheimer disease: an open-label pilot study using actigraphy. J Clin Psychopharmacol 24:456–459

    PubMed  Google Scholar 

  • Manev H, Uz T, Kharlamov A, Joo JY (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 10:1546–1551

    CAS  PubMed  Google Scholar 

  • Matsubara E, Bryant-Thomas T, Pacheco QJ, Henry TL, Poeggeler B, Herbert D et al (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108

    CAS  PubMed  Google Scholar 

  • Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez C (1998) Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson’s disease. J Pineal Res 24:179–192

    CAS  PubMed  Google Scholar 

  • McCarter SJ, Boswell CL, St Louis EK, Dueffert LG, Slocumb N, Boeve BF et al (2013) Treatment outcomes in REM sleep behavior disorder. Sleep Med 14:237–242

    PubMed Central  PubMed  Google Scholar 

  • Medeiros CA, de Bruin CPF, Lopes LA, Magalhaes MC, de Lourdes SM, de Bruin VM (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neurol 254:459–464

    CAS  PubMed  Google Scholar 

  • Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M (1999) Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry 45:417–421

    CAS  PubMed  Google Scholar 

  • Mishima K, Okawa M, Hozumi S, Hishikawa Y (2000) Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 17:419–432

    CAS  PubMed  Google Scholar 

  • Mohan N, Sadeghi K, Reiter RJ, Meltz ML (1995) The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int 37:1063–1070

    CAS  PubMed  Google Scholar 

  • Monti JM, Alvarino F, Cardinali DP, Savio I, Pintos A (1999) Polysomnographic study of the effect of melatonin on sleep in elderly patients with chronic primary insomnia. Arch Gerontol Geriatr 28:85–98

    CAS  PubMed  Google Scholar 

  • Montilla P, Feijoo M, Munoz MC, Munoz-Castaneda JR, Bujalance I, Tunez I (2003) Effect of melatonin on the oxidative stress in N1E-115 cells is not mediated by mt1 receptors. J Physiol Biochem 59:263–268

    CAS  PubMed  Google Scholar 

  • Montilla-Lopez P, Munoz-Agueda MC, Feijoo LM, Munoz-Castaneda JR, Bujalance-Arenas I, Tunez-Finana I (2002) Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 451:237–243

    CAS  PubMed  Google Scholar 

  • Mulchahey JJ, Goldwater DR, Zemlan FP (2004) A single blind, placebo controlled, across groups dose escalation study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the melatonin analog beta-methyl-6-chloromelatonin. Life Sci 75:1843–1856

    CAS  PubMed  Google Scholar 

  • Naskar A, Manivasagam T, Chakraborty J, Singh R, Thomas B, Dhanasekaran M et al (2013) Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 55:304–312

    CAS  PubMed  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381

    PubMed Central  PubMed  Google Scholar 

  • Nickkholgh A, Schneider H, Sobirey M, Venetz WP, Hinz U, le Pelzl H et al (2011) The use of high-dose melatonin in liver resection is safe: first clinical experience. J Pineal Res 50:381–388

    Google Scholar 

  • Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F et al (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275:31311–31317

    CAS  PubMed  Google Scholar 

  • Ohashi Y, Okamoto N, Uchida K, Iyo M, Mori N, Morita Y (1999) Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Biol Psychiatry 45:1646–1652

    CAS  PubMed  Google Scholar 

  • Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32(Suppl):S2–S9

    CAS  PubMed  Google Scholar 

  • Olanow CW, Brin MF, Obeso JA (2000) The role of deep brain stimulation as a surgical treatment for Parkinson’s disease. Neurology 55:S60–S66

    CAS  PubMed  Google Scholar 

  • Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ et al (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96

    CAS  PubMed  Google Scholar 

  • Olivieri G, Hess C, Savaskan E, Ly C, Meier F, Baysang G et al (2001) Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. J Pineal Res 31:320–325

    CAS  PubMed  Google Scholar 

  • Onuki J, Almeida EA, Medeiros MH, Di MP (2005) Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N 1-acetyl-N 2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res 38:107–115

    CAS  PubMed  Google Scholar 

  • Pablos MI, Reiter RJ, Chuang JI, Ortiz GG, Guerrero JM, Sewerynek E et al (1997) Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen. J Appl Physiol 83:354–358

    CAS  PubMed  Google Scholar 

  • Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI et al (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32:69–75

    CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, Seils LK, Kayumov L, Ralph MR, Lowe A, Moller H et al (2002) Senescence, sleep, and circadian rhythms. Ageing Res Rev 1:559–604

    CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C et al (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23(3):267–300

    CAS  PubMed  Google Scholar 

  • Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M et al (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 273:7185–7188

    CAS  PubMed  Google Scholar 

  • Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J et al (2000) An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm 107:203–231

    CAS  PubMed  Google Scholar 

  • Park SY, Jin ML, Kim YH, Kim Y, Lee SJ (2012) Anti-inflammatory effects of aromatic-turmerone through blocking of NF-kappaB, JNK, and p38 MAPK signaling pathways in amyloid beta-stimulated microglia. Int Immunopharmacol 14:13–20

    CAS  PubMed  Google Scholar 

  • Peck JS, LeGoff DB, Ahmed I, Goebert D (2004) Cognitive effects of exogenous melatonin administration in elderly persons: a pilot study. Am J Geriatr Psychiatry 12:432–436

    PubMed  Google Scholar 

  • Peng TI, Hsiao CW, Reiter RJ, Tanaka M, Lai YK, Jou MJ (2012) mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca2+, and lipid insults in NARP cybrids: a potential therapeutic target for melatonin. J Pineal Res 52:93–106

    CAS  PubMed  Google Scholar 

  • Peschke E, Muhlbauer E, Musshoff U, Csernus VJ, Chankiewitz E, Peschke D (2002) Receptor (MT1) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res 33:63–71

    CAS  PubMed  Google Scholar 

  • Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y et al (2001) Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry 40:14995–15001

    CAS  PubMed  Google Scholar 

  • Poliandri AH, Esquifino AI, Cano P, Jimenez V, Lafuente A, Cardinali DP et al (2006) In vivo protective effect of melatonin on cadmium-induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary. J Pineal Res 41:238–246

    CAS  PubMed  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    CAS  PubMed  Google Scholar 

  • Princ FG, Juknat AA, Maxit AG, Cardalda C, Batlle A (1997) Melatonin’s antioxidant protection against delta-aminolevulinic acid-induced oxidative damage in rat cerebellum. J Pineal Res 23:40–46

    CAS  PubMed  Google Scholar 

  • Quinn J, Kulhanek D, Nowlin J, Jones R, Pratico D, Rokach J et al (2005) Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res 1037:209–213

    CAS  PubMed  Google Scholar 

  • Radogna F, Diederich M, Ghibelli L (2010) Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 80:1844–1852

    CAS  PubMed  Google Scholar 

  • Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G et al (2009) Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet 373:482–491

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Garcia JJ, Pie J (1998) Oxidative toxicity in models of neurodegeneration: responses to melatonin. Restor Neurol Neurosci 12:135–142

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44:175–200

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2010) Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 8:194–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riemersma-van Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ (2008) Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299:2642–2655

    Google Scholar 

  • Rinne JO, Laine M, Hiltunen J, Erkinjuntti T (2003) Semantic decision making in early probable AD: a PET activation study. Brain Res Cogn Brain Res 18:89–96

    CAS  PubMed  Google Scholar 

  • Rivera-Bermudez MA, Gerdin MJ, Earnest DJ, Dubocovich ML (2003) Regulation of basal rhythmicity in protein kinase C activity by melatonin in immortalized rat suprachiasmatic nucleus cells. Neurosci Lett 346:37–40

    CAS  PubMed  Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    CAS  PubMed  Google Scholar 

  • Rondanelli M, Opizzi A, Faliva M, Mozzoni M, Antoniello N, Cazzola R et al (2012) Effects of a diet integration with an oily emulsion of DHA-phospholipids containing melatonin and tryptophan in elderly patients suffering from mild cognitive impairment. Nutr Neurosci 15:46–54

    CAS  PubMed  Google Scholar 

  • Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velazquez M, Martinez-Barboza G, Acosta-Martinez JP et al (2003) Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res 35:80–84

    CAS  PubMed  Google Scholar 

  • Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L et al (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52:167–202

    CAS  PubMed  Google Scholar 

  • Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y et al (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41:72–80

    CAS  PubMed  Google Scholar 

  • Rothman SM, Mattson MP (2012) Sleep disturbances in Alzheimer’s and Parkinson’s diseases. Neruomol Med 14:194–204

    CAS  Google Scholar 

  • Sae-Ung K, Ueda K, Govitrapong P, Phansuwan-Pujito P (2012) Melatonin reduces the expression of alpha-synuclein in the dopamine containing neuronal regions of amphetamine-treated postnatal rats. J Pineal Res 52:128–137

    CAS  PubMed  Google Scholar 

  • Samuel W, Masliah E, Hill LR, Butters N, Terry R (1994) Hippocampal connectivity and Alzheimer’s dementia: effects of synapse loss and tangle frequency in a two-component model. Neurology 44:2081–2088

    CAS  PubMed  Google Scholar 

  • Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R et al (2002) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32:59–62

    PubMed  Google Scholar 

  • Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F et al (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38:10–16

    CAS  PubMed  Google Scholar 

  • Schenck CH, Montplaisir JY, Frauscher B, Hogl B, Gagnon JF, Postuma R et al (2013) Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy-a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med 14:795–806

    CAS  PubMed  Google Scholar 

  • Schernhammer ES, Schulmeister K (2004) Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 90:941–943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schuster C, Williams LM, Morris A, Morgan PJ, Barrett P (2005) The human MT1 melatonin receptor stimulates cAMP production in the human neuroblastoma cell line SH-SY5Y cells via a calcium-calmodulin signal transduction pathway. J Neuroendocrinol 17:170–178

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    CAS  PubMed  Google Scholar 

  • Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R et al (2011) The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S42–S80

    PubMed Central  PubMed  Google Scholar 

  • Serfaty M, Kennell-Webb S, Warner J, Blizard R, Raven P (2002) Double blind randomised placebo controlled trial of low dose melatonin for sleep disorders in dementia. Int J Geriatr Psychiatry 17:1120–1127

    PubMed  Google Scholar 

  • Shaikh AY, Xu J, Wu Y, He L, Hsu CY (1997) Melatonin protects bovine cerebral endothelial cells from hyperoxia-induced DNA damage and death. Neurosci Lett 229:193–197

    CAS  PubMed  Google Scholar 

  • Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH et al (2002) Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res 32:173–178

    CAS  PubMed  Google Scholar 

  • Shen Y, Zhang G, Liu L, Xu S (2007) Suppressive effects of melatonin on amyloid-beta-induced glial activation in rat hippocampus. Arch Med Res 38:284–290

    CAS  PubMed  Google Scholar 

  • Shirazi A, Haddadi GH, Asadi-Amoli F, Sakhaee S, Ghazi-Khansari M, Avand A (2011) Radioprotective effect of melatonin in reducing oxidative stress in rat lenses. Cell J 13:79–82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siegrist C, Benedetti C, Orlando A, Beltran JM, Tuchscherr L, Noseda CM et al (2001) Lack of changes in serum prolactin, FSH, TSH, and estradiol after melatonin treatment in doses that improve sleep and reduce benzodiazepine consumption in sleep-disturbed, middle-aged, and elderly patients. J Pineal Res 30:34–42

    CAS  PubMed  Google Scholar 

  • Silveri MC, Reali G, Jenner C, Puopolo M (2007) Attention and memory in the preclinical stage of dementia. J Geriatr Psychiatry Neurol 20:67–75

    PubMed  Google Scholar 

  • Singer C, Tractenberg RE, Kaye J, Schafer K, Gamst A, Grundman M et al (2003) A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26:893–901

    PubMed  Google Scholar 

  • Singh-Manoux A, Dugravot A, Ankri J, Nabi H, Berr C, Goldberg M et al (2014) Subjective cognitive complaints and mortality: does the type of complaint matter? J Psychiatr Res 48:73–78

    Google Scholar 

  • Skene DJ, Swaab DF (2003) Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol 38:199–206

    CAS  PubMed  Google Scholar 

  • Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pevet P, Ravid D et al (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174

    CAS  PubMed  Google Scholar 

  • Song W, Lahiri DK (1997) Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci 9:75–92

    CAS  PubMed  Google Scholar 

  • Spencer JP, Middleton LJ, Davies CH (2010) Investigation into the efficacy of the acetylcholinesterase inhibitor, donepezil, and novel procognitive agents to induce gamma oscillations in rat hippocampal slices. Neuropharmacology 59:437–443

    CAS  PubMed  Google Scholar 

  • Spuch C, Antequera D, Isabel Fernandez-Bachiller M, Isabel Rodriguez-Franco M, Carro E (2010) A new tacrine-melatonin hybrid reduces amyloid burden and behavioral deficits in a mouse model of Alzheimer’s disease. Neurotox Res 17:421–431

    CAS  PubMed  Google Scholar 

  • Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2:15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan V, Kaur C, Pandi-Perumal SR, Brown GM, Cardinali DP (2011a) Melatonin and its agonist ramelteon in Alzheimer’s disease: possible therapeutic value. Int J Alzheimers Dis 2011:1–15

    Google Scholar 

  • Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW et al (2011b) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 14:297–317

    Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    PubMed Central  PubMed  Google Scholar 

  • Struble RG, Cork LC, Whitehouse PJ, Price DL (1982) Cholinergic innervation in neuritic plaques. Science 216:413–415

    CAS  PubMed  Google Scholar 

  • Stuchbury G, Munch G (2005) Alzheimer’s associated inflammation, potential drug targets and future therapies. J Neural Transm 112:429–453

    CAS  PubMed  Google Scholar 

  • Subramanian P, Mirunalini S, Pandi-Perumal SR, Trakht I, Cardinali DP (2007) Melatonin treatment improves the antioxidant status and decreases lipid content in brain and liver of rats. Eur J Pharmacol 571:116–119

    CAS  PubMed  Google Scholar 

  • Tai SH, Hung YC, Lee EJ, Lee AC, Chen TY, Shen CC et al (2011) Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormetic dose-response. J Pineal Res 50:292–303

    CAS  PubMed  Google Scholar 

  • Takeuchi N, Uchimura N, Hashizume Y, Mukai M, Etoh Y, Yamamoto K et al (2001) Melatonin therapy for REM sleep behavior disorder. Psychiatry Clin Neurosci 55:267–269

    CAS  PubMed  Google Scholar 

  • Tan D, Reiter RJ, Chen LD, Poeggeler B, Manchester LC, Barlow-Walden LR (1994) Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis 15:215–218

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    CAS  PubMed  Google Scholar 

  • Tang F, Nag S, Shiu SY, Pang SF (2002) The effects of melatonin and Ginkgo biloba extract on memory loss and choline acetyltransferase activities in the brain of rats infused intracerebroventricularly with beta-amyloid 1-40. Life Sci 71:2625–2631

    CAS  PubMed  Google Scholar 

  • Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tapias V, Cannon JR, Greenamyre JT (2010) Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model. J Neurosci Res 88:420–427

    CAS  PubMed  Google Scholar 

  • Taysi S, Memisogullari R, Koc M, Yazici AT, Aslankurt M, Gumustekin K et al (2008) Melatonin reduces oxidative stress in the rat lens due to radiation-induced oxidative injury. Int J Radiat Biol 84:803–808

    CAS  PubMed  Google Scholar 

  • Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    CAS  PubMed  Google Scholar 

  • Thomas B, Mohanakumar KP (2004) Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res 36:25–32

    CAS  PubMed  Google Scholar 

  • Tsai MC, Chen WJ, Tsai MS, Ching CH, Chuang JI (2011) Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats. J Pineal Res 51:233–245

    CAS  PubMed  Google Scholar 

  • Urata Y, Honma S, Goto S, Todoroki S, Iida T, Cho S et al (1999) Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 27:838–847

    CAS  PubMed  Google Scholar 

  • Van Someren EJ (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35:1229–1237

    PubMed  Google Scholar 

  • Vecchierini MF (2010) Sleep disturbances in Alzheimer’s disease and other dementias. Psychol Neuropsychiatr Vieil 8:15–23

    PubMed  Google Scholar 

  • Vollrath L, Semm P, Gammel G (1981) Sleep induction by intranasal administration of melatonin. Adv Biosci 29:327–329

    Google Scholar 

  • Voordouw BC, Euser R, Verdonk RE, Alberda BT, de Jong FH, Drogendijk AC et al (1992) Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J Clin Endocrinol Metab 74:108–117

    CAS  PubMed  Google Scholar 

  • Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M et al (2007) Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Curr Med Res Opin 23:2597–2605

    CAS  PubMed  Google Scholar 

  • Waldhauser F, Waldhauser M, Lieberman HR, Deng MH, Lynch HJ, Wurtman RJ (1984) Bioavailability of oral melatonin in humans. Neuroendocrinology 39:307–313

    CAS  PubMed  Google Scholar 

  • Waldhauser F, Saletu B, Trinchard-Lugan I (1990) Sleep laboratory investigations on hypnotic properties of melatonin. Psychopharmacol (Berl) 100:222–226

    CAS  Google Scholar 

  • Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ (2004) Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin 25:276–280

    PubMed  Google Scholar 

  • Wang XC, Zhang J, Yu X, Han L, Zhou ZT, Zhang Y et al (2005) Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Sheng Li Xue Bao 57:7–12

    CAS  PubMed  Google Scholar 

  • Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B et al (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    CAS  PubMed  Google Scholar 

  • Weldemichael DA, Grossberg GT (2010) Circadian rhythm disturbances in patients with Alzheimer’s disease: a review. Int J Alzheimer’s Dis 2010. doi:10.4061/2010/716453

  • Werneke U, Turner T, Priebe S (2006) Complementary medicines in psychiatry: review of effectiveness and safety. Br J Psychiatry 188:109–121

    PubMed  Google Scholar 

  • Wiesenberg I, Missbach M, Kahlen JP, Schrader M, Carlberg C (1995) Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res 23:327–333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willis GL (2008) Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci 19:245–316

    CAS  PubMed  Google Scholar 

  • Willis GL, Armstrong SM (1999) A therapeutic role for melatonin antagonism in experimental models of Parkinson’s disease. Physiol Behav 66:785–795

    CAS  PubMed  Google Scholar 

  • Willis GL, Robertson AD (2004) Recovery of experimental Parkinson’s disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol Biochem Behav 79:413–429

    CAS  PubMed  Google Scholar 

  • Willis GL, Turner EJ (2007) Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 24:521–537

    PubMed  Google Scholar 

  • Wilson SJ, Nutt DJ, Alford C, Argyropoulos SV, Baldwin DS, Bateson AN et al (2010) British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J Psychopharmacol 24:1577–1601

    CAS  PubMed  Google Scholar 

  • Witt-Enderby PA, MacKenzie RS, McKeon RM, Carroll EA, Bordt SL, Melan MA (2000) Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor. Cell Motil Cytoskeleton 46:28–42

    CAS  PubMed  Google Scholar 

  • Wu YH, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636

    PubMed  Google Scholar 

  • Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, Van Kan HJ et al (2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 88:5898–5906

    CAS  PubMed  Google Scholar 

  • Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28:1239–1247

    CAS  PubMed  Google Scholar 

  • Xiong YF, Chen Q, Chen J, Zhou J, Wang HX (2011) Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A. J Pineal Res 50:319–327

    CAS  PubMed  Google Scholar 

  • Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [AlIII, ZnII, CuII, MnII, FeII]. J Pineal Res 35:98–103

    CAS  PubMed  Google Scholar 

  • Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 7:240–250

    CAS  PubMed  Google Scholar 

  • Zhang YC, Wang ZF, Wang Q, Wang YP, Wang JZ (2004) Melatonin attenuates beta-amyloid-induced inhibition of neurofilament expression. Acta Pharmacol Sin 25:447–451

    CAS  PubMed  Google Scholar 

  • Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86:4727–4730

    CAS  PubMed  Google Scholar 

  • Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35:125–130

    CAS  PubMed  Google Scholar 

  • Zhu LQ, Wang SH, Ling ZQ, Wang DL, Wang JZ (2004) Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 37:71–77

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in authors’ laboratories were supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2012 0984), and the University of Buenos Aires. DPC is a Research Career Awardee from the Argentine Research Council (CONICET) and Professor Emeritus, University of Buenos Aires. DEV and LIB are Research Career Awardees from CONICET.

Conflict of Interest

None is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Cardinali M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardinali, D.P., Vigo, D.E., Olivar, N., Vidal, M.F., Brusco, L.I. (2015). Therapeutical Implications of Melatonin in Alzheimer’s and Parkinson’s Diseases. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_9

Download citation

Publish with us

Policies and ethics