Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1441 Accesses

Abstract

Cell death attributed to the tryptophan (Trp) metabolites is dependent on the exposure time and intracellular concentrations of cytotoxic Trp derivatives such as 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HAA), 5-hydroxyanthranilic acid (5HAA), and quinolinic acid (QA). However, 3HAA, 3HK, and QA at low concentrations may also serve as a precursor for nicotinamide adenine dinucleotide [NAD+] which has vital importance to maintain cell viability. Inhibition of indoleamine 2,3-dioxygenase (IDO) activity results in a dose-dependent decrease in intracellular [NAD+] levels. Mitochondrial permeability transition occurs in several forms of necrotic cell death. Disturbances in the normal function of the mitochondria are associated with the alterations in the balance of Trp metabolism. While kynurenic acid (KA) has proven to be neuroprotective with the potential endogenous antioxidant properties, QA is a specific agonist at the N-methyl-d-aspartate (NMDA) receptors and a potent neurotoxin with the marked free radical-producing property. QA-induced cytotoxic effects are mediated by overactivation of NMDA-like receptors and overexpression of inducible nitric oxide synthase (iNOS). l-Kynurenine-derived neurotoxin-induced apoptosis occurs through reactive oxygen species (ROS)-mediated pathways and is blocked by antioxidants. Unlike the kynurenine pathway, the methoxyindole metabolites of Trp metabolism protect cells against oxidative stress-induced apoptosis. Furthermore, deprivation of Trp triggers autophagy in a mammalian target of rapamycin (mTOR)-dependent manner. mTOR inhibition can suppress the activation of cyclin-dependent kinases and then inhibits the cell cycle progress, suppresses cell proliferation, and finally results in cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberati-Giani D, Malherbe P, Ricciardi-Castagnoli P, Köhler C, Denis-Donini S, Cesura AM (1997) Differential regulation of indoleamine 2,3-dioxygenase expression by nitric oxide and inflammatory mediators in IFN-gamma-activated murine macrophages and microglial cells. J Immunol 159:419–426

    CAS  PubMed  Google Scholar 

  • Amaral M, Levy C, Heyes DJ, Lafite P, Outeiro TF, Giorgini F, Leys D, Scrutton NS (2013) Structural basis of kynurenine 3-monooxygenase inhibition. Nature 496:382–385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bae SJ, Lee JS, Lee EK, Kim JM, Choi J, Heo HS, Yu BP, Chung HY (2010) The anti-apoptotic action of 5-hydroxyindole: protection of mitochondrial integrity. Biol Pharm Bull 33:550–555

    CAS  PubMed  Google Scholar 

  • Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, Ferraro L (2013) Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci 37:1470–1477

    PubMed  Google Scholar 

  • Bialik S, Kimchi A (2010) Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr Opin Cell Biol 22:199–205

    CAS  PubMed  Google Scholar 

  • Blask DE, Sauer LA, Dauchy RT, Holowachuk EW, Ruhoff MS, Kopff HS (1999) Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res 59:4693–4701

    CAS  PubMed  Google Scholar 

  • Blask DE, Dauchy RT, Sauer LA, Krause JA, Brainard GC (2002) Light during darkness, melatonin suppression and cancer progression. Neuro Endocrinol Lett 23(Suppl 2):52–56

    PubMed  Google Scholar 

  • Blask DE, Dauchy RT, Sauer LA (2005) Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine 27:179–188

    CAS  PubMed  Google Scholar 

  • Bovellan M, Fritzsche M, Stevens C, Charras G (2010) Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J 277:58–65

    CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Brew BJ, Adams S, Jayasena T, Guillemin GJ (2009a) Effects of kynurenine pathway metabolites on intracellular NAD synthesis and cell death in human primary astrocytes and neurons. Int J Tryptophan Res 2:61–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009b) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77–86

    CAS  PubMed  Google Scholar 

  • Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Göbel G, Margreiter R, Königsrainer A, Fuchs D, Amberger A (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12:1144–1151

    CAS  PubMed  Google Scholar 

  • Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339

    CAS  PubMed  Google Scholar 

  • Chen L1, Xu B, Liu L, Luo Y, Yin J, Zhou H, Chen W, Shen T, Han X, Huang S (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells. Lab Invest 90:762–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77:1310–1318

    CAS  PubMed  Google Scholar 

  • Choi SH, Joe EH, Kim SU, Jin BK (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci 23:5877–5886

    CAS  PubMed  Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 7:e45456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chong ZZ, Yao Q, Li HH (2013) The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal 25:1598–1607

    CAS  PubMed  Google Scholar 

  • Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB (2004) Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem 271:2060–2066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colín-González AL, Maldonado PD, Santamaría A (2013) 3-Hydroxykynurenine: an intriguing molecule exerting dual actions in the Central Nervous System. Neurotoxicology 34:189–204

    PubMed  Google Scholar 

  • Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22:95–101

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Reiter RJ (2001) Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol 426:1–10

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Costantino G, Caputi AP (1998) Protective effect of melatonin on cellular energy depletion mediated by peroxynitrite and poly (ADP-ribose) synthetase activation in a non-septic shock model induced by zymosan in the rat. J Pineal Res 25:78–85

    CAS  PubMed  Google Scholar 

  • Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, Stone TW (2010) On the biological importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res 3:51–59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3:275–283

    CAS  PubMed  Google Scholar 

  • Diegelmann J, Olszak T, Göke B, Blumberg RS, Brand S (2012) A novel role for interleukin-27 (IL-27) as mediator of intestinal epithelial barrier protection mediated via differential signal transducer and activator of transcription (STAT) protein signaling and induction of antibacterial and anti-inflammatory proteins. J Biol Chem 287:286–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC (1999) Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia 28:114–127

    CAS  PubMed  Google Scholar 

  • Dykens JA, Sullivan SG, Stern A (1987) Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol 36:211–217

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    CAS  PubMed  Google Scholar 

  • Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207

    CAS  PubMed  Google Scholar 

  • Feksa LR, Latini A, Rech VC, Wajner M, Dutra-Filho CS, de Souza Wyse AT, Wannmacher CM (2006) Promotion of oxidative stress by L-tryptophan in cerebral cortex of rats. Neurochem Int 49:87–93

    CAS  PubMed  Google Scholar 

  • Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233

    CAS  PubMed  Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    CAS  PubMed  Google Scholar 

  • Figueiredo C, Pais TF, Gomes JR, Chatterjee S (2008) Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107:73–85

    CAS  PubMed  Google Scholar 

  • Fougeray S, Mami I, Bertho G, Beaune P, Thervet E, Pallet N (2012) Tryptophan depletion and the kinase GCN2 mediate IFN-γ-induced autophagy. J Immunol 189:2954–2964

    CAS  PubMed  Google Scholar 

  • Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K, Kalvakolanu DV (2012) An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A 109:10316–10321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275

    CAS  PubMed  Google Scholar 

  • Golstein P, Kroemer G (2005) Redundant cell death mechanisms as relics and backups. Cell Death Differ 12(Suppl 2):1490–1496

    CAS  PubMed  Google Scholar 

  • Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43

    CAS  PubMed  Google Scholar 

  • Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15:1875–1886

    CAS  PubMed  Google Scholar 

  • Grant R, Kapoor V (2003) Inhibition of indoleamine 2,3-dioxygenase activity in IFN-gamma stimulated astroglioma cells decreases intracellular NAD levels. Biochem Pharmacol 66:1033–1036

    CAS  PubMed  Google Scholar 

  • Grant RS, Naif H, Espinosa M, Kapoor V (2000) IDO induction in IFN-gamma activated astroglia: a role in improving cell viability during oxidative stress. Redox Rep 5:101–104

    CAS  PubMed  Google Scholar 

  • Gu L, Gao J, Li Q, Zhu YP, Jia CS, Fu RY, Chen Y, Liao QK, Ma Z (2008) Rapamycin reverses NPM-ALK-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis. Leukemia 22:2091–2096

    CAS  PubMed  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892

    CAS  PubMed  Google Scholar 

  • Gunn RM, Hailes HC (2008) Insights into the PI3-K-PKB-mTOR signalling pathway from small molecules. J Chem Biol 1:49–62

    PubMed Central  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    CAS  PubMed  Google Scholar 

  • Harper SJ, Wilkie N (2003) MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets 7:187–200

    CAS  PubMed  Google Scholar 

  • Hibaoui Y, Roulet E, Ruegg UT (2009) Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J Pineal Res 47:238–252

    CAS  PubMed  Google Scholar 

  • Houston M, Chumley P, Radi R, Rubbo H, Freeman BA (1998) Xanthine oxidase reaction with nitric oxide and peroxynitrite. Arch Biochem Biophys 355:1–8

    CAS  PubMed  Google Scholar 

  • Huang XS, Chen HP, Yu HH, Yan YF, Liao ZP, Huang QR (2014) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for hypoxic preconditioning-mediated delayed cardioprotection. Mol Cell Biochem 385:33–41

    CAS  PubMed  Google Scholar 

  • Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16:771–780

    CAS  PubMed  Google Scholar 

  • Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400

    CAS  PubMed  Google Scholar 

  • Irrinki KM, Mallilankaraman K, Thapa RJ, Chandramoorthy HC, Smith FJ, Jog NR, Gandhirajan RK, Kelsen SG, Houser SR, May MJ, Balachandran S, Madesh M (2011) Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol Cell Biol 31:3745–3758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999a) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh K, Ishii T, Wakabayashi N, Yamamoto M (1999b) Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 31:319–324

    CAS  PubMed  Google Scholar 

  • Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 5:237–243

    PubMed  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    CAS  PubMed  Google Scholar 

  • Jog NR, Caricchio R (2013) Differential regulation of cell death programs in males and females by Poly (ADP-Ribose) Polymerase-1 and 17β estradiol. Cell Death Dis 4:e758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST (2004) Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 37:55–70

    CAS  PubMed  Google Scholar 

  • Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC (2010) Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca (2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 48:20–38

    CAS  PubMed  Google Scholar 

  • Kang J, Rychahou PG, Ishola TA, Mourot JM, Evers BM, Chung DH (2008) N-myc is a novel regulator of PI3K-mediated VEGF expression in neuroblastoma. Oncogene 27:3999–4007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26(5):675–687

    CAS  PubMed  Google Scholar 

  • Kim SH, Lu HF, Alano CC (2011) Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One 6:e14731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Choi YK, Lee KS, Cho DH, Baek YY, Lee DK, Ha KS, Choe J, Won MH, Jeoung D, Lee H, Kwon YG, Kim YM (2012) Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA. Free Radic Biol Med 53:629–640

    CAS  PubMed  Google Scholar 

  • King NJ, Thomas SR (2007) Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39:2167–2172

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179:1360–1372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death 2009 (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhn DM, Sykes CE, Geddes TJ, Jaunarajs KL, Bishop C (2011) Tryptophan hydroxylase 2 aggregates through disulfide cross-linking upon oxidation: possible link to serotonin deficits and non-motor symptoms in Parkinson’s disease. J Neurochem 116:426–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HJ, Bach JH, Chae HS, Lee SH, Joo WS, Choi SH, Kim KY, Lee WB, Kim SS (2004) Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 88:647–656

    CAS  PubMed  Google Scholar 

  • Lee SM, Lee YS, Choi JH, Park SG, Choi IW, Joo YD, Lee WS, Lee JN, Choi I, Seo SK (2010) Tryptophan metabolite 3-hydroxyanthranilic acid selectively induces activated T cell death via intracellular GSH depletion. Immunol Lett 132:53–60

    CAS  PubMed  Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196

    CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Qu Y, Li J, Xiong Y, Mao M, Mu D (2007) Relationship between HIF-1α expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Res 1180:133–139

    CAS  PubMed  Google Scholar 

  • Li L, Xiong Y, Qu Y, Mao M, Mu W, Wang H, Mu D (2008a) The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 in the developing rat brain after hypoxia-ischemia. Acta Neuropathol 115:297–303

    CAS  PubMed  Google Scholar 

  • Li L, Qu Y, Mao M, Xiong Y, Mu D (2008b) The involvement of phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1 in the developing rat brain after hypoxia-ischemia. Brain Res 1197:152–158

    CAS  PubMed  Google Scholar 

  • Liu J, Zhao ML, Brosnan CF, Lee SC (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1beta and IL-1 receptor antagonist. J Immunol 157:3569–3576

    CAS  PubMed  Google Scholar 

  • Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    CAS  PubMed  Google Scholar 

  • Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, La Cruz VP (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33:538–547

    PubMed  Google Scholar 

  • Mailankot M, Nagaraj RH (2010) Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human lens epithelial cells: apoptosis through the formation of 3-hydroxykynurenine. Int J Biochem Cell Biol 42:1446–1454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinis P, Zago L, Maritati M, Battaglia V, Grancara S, Rizzoli V, Agostinelli E, Bragadin M, Toninello A (2012) Interactions of melatonin with mammalian mitochondria. Reducer of energy capacity and amplifier of permeability transition. Amino Acids 42:1827–1837

    CAS  PubMed  Google Scholar 

  • Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224

    PubMed  Google Scholar 

  • Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN, Link CJ, Prendergast GC (2012) IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology 1:1460–1468

    PubMed Central  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mori T, Wang X, Aoki T, Lo EH (2002) Downregulation of matrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma 19:1411–1419

    PubMed  Google Scholar 

  • Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, Wada H, Takeuchi S, Noma A, Seishima M (1999) L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol 467:559–563

    CAS  PubMed  Google Scholar 

  • Moriwaki K, Chan FK (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev 27:1640–1649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133–139

    CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    CAS  PubMed  Google Scholar 

  • Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1 alpha in neuroblastoma cells. Cancer Res 66:4249–4255

    CAS  PubMed  Google Scholar 

  • Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, Ferriero DM, Martin LJ (2007) Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience 149:822–833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Northington FJ, Chavez-Valdez R, Martin LJ (2011) Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 69:743–758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh GS, Pae HO, Choi BM, Chae SC, Lee HS, Ryu DG, Chung HT (2004) 3-Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2,3-dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase-1 expression. Biochem Biophys Res Commun 320:1156–1162

    CAS  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci U S A 93:12553–12558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    CAS  PubMed  Google Scholar 

  • Opitz CA, Wick W, Steinman L, Platten M (2007) Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci 64:2542–2563

    CAS  PubMed  Google Scholar 

  • Pae HO, Oh GS, Lee BS, Rim JS, Kim YM, Chung HT (2006) 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis 187:274–284

    CAS  PubMed  Google Scholar 

  • Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S (2008) Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 5:43

    PubMed Central  PubMed  Google Scholar 

  • Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223:45–50

    CAS  PubMed  Google Scholar 

  • Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res 5:1–8

    PubMed Central  PubMed  Google Scholar 

  • Pfeifer S, Schreder M, Bolomsky A, Graffi S, Fuchs D, Sahota SS, Ludwig H, Zojer N (2012) Induction of indoleamine-2,3 dioxygenase in bone marrow stromal cells inhibits myeloma cell growth. J Cancer Res Clin Oncol 138:1821–1830

    CAS  PubMed  Google Scholar 

  • Phillis JW, O’Regan MH (2003) Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int 43:461–467

    CAS  PubMed  Google Scholar 

  • Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Brain Res Rev 44:13–47

    CAS  PubMed  Google Scholar 

  • Prasad V, Chandele A, Jagtap JC, Sudheer Kumar P, Shastry P (2006) ROS-triggered caspase 2 activation and feedback amplification loop in beta-carotene-induced apoptosis. Free Radic Biol Med 41:431–442

    CAS  PubMed  Google Scholar 

  • Saito K, Chen CY, Masana M, Crowley JS, Markey SP, Heyes MP (1993) 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells). Biochem J 291:11–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra CA (2012) Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem 19:3805–3821

    PubMed  Google Scholar 

  • Santamaría A, Ríos C (1993) MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54

    PubMed  Google Scholar 

  • Santamaría A, Galván-Arzate S, Lisý V, Ali SF, Duhart HM, Osorio-Rico L, Ríos C, St’astný F (2001) Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport 12:871–874

    PubMed  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    CAS  PubMed  Google Scholar 

  • Shaw RJ (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 196:65–80

    CAS  Google Scholar 

  • Smith AJ, Smith RA, Stone TW (2009) 5-Hydroxyanthranilic acid, a tryptophan metabolite, generates oxidative stress and neuronal death via p38 activation in cultured cerebellar granule neurons. Neurotox Res 15:303–310

    CAS  PubMed  Google Scholar 

  • Song H, Park H, Kim YS, Kim KD, Lee HK, Cho DH, Yang JW, Hur DY (2011) L-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol 11:932–938

    CAS  PubMed  Google Scholar 

  • Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859

    CAS  PubMed  Google Scholar 

  • Sun J, Yu J, Li H, Yang L, Wei F, Yu W, Liu J, Ren X (2011) Upregulated expression of indoleamine 2,3-dioxygenase in CHO cells induces apoptosis of competent T cells and increases proportion of Treg cells. J Exp Clin Cancer Res 30:82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prévost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szalardy L, Klivenyi P, Zadori D, Fulop F, Toldi J, Vecsei L (2012) Mitochondrial disturbances, tryptophan metabolites and neurodegeneration: medicinal chemistry aspects. Curr Med Chem 19:1899–1920

    CAS  PubMed  Google Scholar 

  • Tan L, Yu JT, Tan L (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323:1–8

    CAS  PubMed  Google Scholar 

  • Thornton P, Pinteaux E, Gibson RM, Allan SM, Rothwell NJ (2006) Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem 98:258–266

    CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    CAS  PubMed  Google Scholar 

  • Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G (2013) Autophagy and genomic integrity. Cell Death Differ 20:1444–1454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Viles K, Mathai C, Jourd’heuil FL, Jourd’heuil D (2013) Xanthine oxidase-mediated denitrosation of N-nitroso-tryptophan by superoxide and uric acid. Nitric Oxide 28:57–64

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2001) Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 7:56–64

    CAS  PubMed  Google Scholar 

  • Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    CAS  PubMed  Google Scholar 

  • Wang G (2012) Hormesis, cell death, and regenerative medicine for neurodegenerative diseases. Dose Response 11:238–254

    PubMed Central  PubMed  Google Scholar 

  • Wang X, Zhu C, Qiu L, Hagberg H, Sandberg M, Blomgren K (2003) Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J Neurochem 86:351–362

    CAS  PubMed  Google Scholar 

  • Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM (2000) Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem 75:81–90

    CAS  PubMed  Google Scholar 

  • Whiteman M, Armstrong JS, Cheung NS, Siau JL, Rose P, Schantz JT, Jones DP, Halliwell B (2004) Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 18:1395–1397

    CAS  PubMed  Google Scholar 

  • Wu HQ, Pereira EF, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R (2010) The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 40:204–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao L, Gong LL, Yuan D, Deng M, Zeng XM, Chen LL, Zhang L, Yan Q, Liu JP, Hu XH, Sun SM, Liu J, Ma HL, Zheng CB, Fu H, Chen PC, Zhao JQ, Xie SS, Zou LJ, Xiao YM, Liu WB, Zhang J, Liu Y, Li DW (2010) Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ 17:1448–1462

    CAS  PubMed  Google Scholar 

  • Yager JY, Armstrong EA, Miyashita H, Wirrell EC (2002) Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 24:367–381

    CAS  PubMed  Google Scholar 

  • Ying W (2006) NAD + and NADH in cellular functions and cell death. Front Biosci 11:3129–3148

    CAS  PubMed  Google Scholar 

  • Yoo HJ, Byun HJ, Kim BR, Lee KH, Park SY, Rho SB (2012) DAPk1 inhibits NF-κB activation through TNF-α and INF-γ-induced apoptosis. Cell Signal 24:1471–1477

    CAS  PubMed  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    CAS  PubMed  Google Scholar 

  • Zhu X, Lee HG, Raina AK, Perry G, Smith MA (2002) The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11:270–281

    CAS  PubMed  Google Scholar 

  • Zhu H, Bogdanov MB, Boyle SH, Matson W, Sharma S, Matson S, Churchill E, Fiehn O, Rush JA, Krishnan RR, Pickering E, Delnomdedieu M, Kaddurah-Daouk R, Network PR (2013) Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder - possible role for methoxyindole pathway. PLoS One 8:e68283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319:991–997

    CAS  PubMed  Google Scholar 

  • Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engin, A., Engin, A.B. (2015). Tryptophan and Cell Death. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_2

Download citation

Publish with us

Policies and ethics