Skip to main content

Indoleamine 2,3-Dioxygenase-Competent Regulatory Dendritic Cells and Their Role in Alloimmune Regulation and Transplant Immune Tolerance

  • Chapter
Tryptophan Metabolism: Implications for Biological Processes, Health and Disease

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Underlying mechanisms of immune tolerance, including the characterization of antigen-presenting cells (APCs) and regulatory T (Treg) cells and the function of indoleamine 2,3-dioxygenase (IDO) activity that may play key roles in promoting operational tolerance, have been discussed in this chapter. Donor dendritic cells (DCs) migrate from graft and present the donor major histocompatibility complex (MHC) molecules to allospecific T cells. Allorecognition occurs when donor MHC molecules are processed by host APCs. Treg cells have an indispensable role in the creation of peripheral allograft tolerance; therefore, Treg cell differentiation is important to create a new T-cell repertoire. Immune tolerance primarily occurs in the thymus that is referred to as central tolerance. Elimination of self-reactive T cells and clonal anergy are two principal mechanisms of peripheral tolerance (Fig. 14.1). Allorecognition can occur by two distinct pathways; direct recognition is achieved by foreign MHC class II molecules on the surface of donor bone marrow-derived cells, and indirect recognition is executed by internalized donor class II histocompatibility molecules. Allogeneic DCs are required for both rejection and tolerance of allografts. While CD28, CD5, and CD43 contribute to negative selection of the tolerance-susceptible population, costimulatory molecule, cytotoxic T lymphocyte antigen (CTLA)-4 signaling in thymocytes may diminish the efficacy of clonal deletion. The programmed death 1 (PD-1) receptor and its ligands PD-L1 (B7-H1) and PD-L2 (B7-DC) play an important role in tolerance. Tolerogenic DCs present antigen to antigen-specific T cells but fail to deliver adequate endogenous costimulatory signals for T-cell activation and proliferation. Pathways in the B7-CD28, family of costimulatory molecules, regulate T-cell activation and tolerance. Acute rejection of vascularized solid organ allotransplants is essentially mediated through direct allorecognition, while indirect allorecognition is commonly associated with chronic rejection of transplants. The subpopulation of CD4+ T lymphocytes that coexpress the forkhead family transcription factor-3 (Foxp3) plays a unique role as Tregs. Foxp3+ Treg cells are potent mediators of dominant self-tolerance in the periphery. Interleukin (IL)-2 secretion from conventional T cells is critical for development of suppressive activity of Treg. Increased inherent IDO activity, which is the rate-limiting enzyme for the tryptophan (Trp) catabolism in transplanted cells, plays an important role in the induction of immune tolerance. IDO expression by DCs in response to interferon (IFN)-gamma stimulation may suppress T-cell responses and promote tolerance either through direct effects of Trp depletion and Trp metabolites on T cells or through the effects of IDO on DCs. Overexpression of IDO in transplanted organs can prolong allograft survival due to peripheral tolerogenic effect. Treg activation by IDO+ plasmacytoid (p)DCs requires an intact amino acid-responsive general amino acid control non-derepressible (GCN)2 pathway in the Tregs. GCN2 and mammalian target of rapamycin (mTOR) react to amino acid deprivation. Following liver transplantation, the incidence of chronic rejection is lower than the other posttransplant organ grafts, and immunosuppression withdrawal is also successful in a high proportion of liver recipients. Liver graft acceptance results from donor antigen-specific tolerance which is demonstrated by the extension of tolerance to other grafts of donor origin. However, both underlying mechanisms of spontaneous liver transplant tolerance and transfer of tolerance from the liver to the second graft are not known precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegre ML, Fallarino F (2006) Mechanisms of CTLA-4-Ig in tolerance induction. Curr Pharm Des 12:149–160

    CAS  PubMed  Google Scholar 

  • Alex Bishop G, Bertolino PD, Bowen DG, McCaughan GW (2012) Tolerance in liver transplantation. Best Pract Res Clin Gastroenterol 26(1):73–84

    CAS  PubMed  Google Scholar 

  • Alpdogan O, Van Den Brink MR (2012) Immune tolerance and transplantation. Semin Oncol 39:629–642

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andreola G, Chittenden M, Shaffer J, Cosimi AB, Kawai T, Cotter P, Locascio SA, Morokata T, Dey BR, Tolkoff-Rubin NT, Preffer F, Bonnefoix T, Kattleman K, Spitzer TR, Sachs DH, Sykes M (2011) Mechanisms of donor-specific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation. Am J Transplant 11:1236–1247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arpinati M, Chirumbolo G, Urbini B, Perrone G, Rondelli D, Anasetti C (2003) Role of plasmacytoid dendritic cells in immunity and tolerance after allogeneic hematopoietic stem cell transplantation. Transpl Immunol 11:345–356

    CAS  PubMed  Google Scholar 

  • Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Cook HT, Lechler RI (2001) Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: implications for the pathogenesis of chronic allograft nephropathy. J Immunol 167:7199–7206

    CAS  PubMed  Google Scholar 

  • Baldwin TA, Hogquist KA (2007) Transcriptional analysis of clonal deletion in vivo. J Immunol 179:837–844

    CAS  PubMed  Google Scholar 

  • Basu S, Golovina T, Mikheeva T, June CH, Riley JL (2008) Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 180:5794–5798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia M, Stabilini A, Roncarolo MG (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105:4743–4748

    CAS  PubMed  Google Scholar 

  • Belladonna ML, Puccetti P, Orabona C, Fallarino F, Vacca C, Volpi C, Gizzi S, Pallotta MT, Fioretti MC, Grohmann U (2007) Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation 84:S17–S20

    CAS  PubMed  Google Scholar 

  • Benichou G, Tocco G (2013) The road to transplant tolerance is paved with good dendritic cells. Eur J Immunol 43:584–588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benítez C, Londoño MC, Miquel R, Manzia TM, Abraldes JG, Lozano JJ, Martínez-Llordella M, López M, Angelico R, Bohne F, Sese P, Daoud F, Larcier P, Roelen DL, Claas F, Whitehouse G, Lerut J, Pirenne J, Rimola A, Tisone G, Sánchez-Fueyo A (2013) Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology 58:1824–1835

    PubMed  Google Scholar 

  • Benoist C, Mathis D (2012) Tregs cells, life history, and diversity. Cold Spring Harb Perspect Biol 4:a007021

    PubMed Central  PubMed  Google Scholar 

  • Benseler V, Warren A, Vo M, Holz LE, Tay SS, Le Couteur DG, Breen E, Allison AC, van Rooijen N, McGuffog C, Schlitt HJ, Bowen DG, McCaughan GW, Bertolino P (2011) Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc Natl Acad Sci U S A 108:16735–16740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, Thompson CB, Burchill MA, Farrar MA, Turka LA (2004) Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 172:5287–5296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B (2001) Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 166:5430–5438

    CAS  PubMed  Google Scholar 

  • Bestard O, Cruzado JM, Mestre M, Caldés A, Bas J, Carrera M, Torras J, Rama I, Moreso F, Serón D, Grinyó JM (2007) Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. J Immunol 179:4901–4909

    CAS  PubMed  Google Scholar 

  • Bishop GA, Wang C, Sharland AF, McCaughan G (2002) Spontaneous acceptance of liver transplants in rodents: evidence that liver leucocytes induce recipient T-cell death by neglect. Immunol Cell Biol 80:93–100

    PubMed  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926

    CAS  PubMed  Google Scholar 

  • Bouneaud C, Kourilsky P, Bousso P (2000) Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13:829–840

    CAS  PubMed  Google Scholar 

  • Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P (2004) The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 114:701–712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brandacher G, Cakar F, Winkler C, Schneeberger S, Obrist P, Bösmüller C, Werner-Felmayer G, Werner ER, Bonatti H, Margreiter R, Fuchs D (2007a) Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int 71:60–67

    CAS  PubMed  Google Scholar 

  • Brandacher G, Margreiter R, Fuchs D (2007b) Implications of IFN-gamma-mediated tryptophan catabolism on solid organ transplantation. Curr Drug Metab 8:273–282

    CAS  PubMed  Google Scholar 

  • Buhlmann JE, Elkin SK, Sharpe AH (2003) A role for the B7–1/B7–2:CD28/CTLA-4 pathway during negative selection. J Immunol 170:5421–5428

    CAS  PubMed  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen W (2006) Dendritic cells and (CD4+)CD25+ T regulatory cells: crosstalk between two professionals in immunity versus tolerance. Front Biosci 11:1360–1370

    CAS  PubMed  Google Scholar 

  • Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR (2008) The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 181:5396–5404

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S, Waldmann H (2004) Induction of foxP3+regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172:6003–6010

    CAS  PubMed  Google Scholar 

  • Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H (2009) Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A 106:12055–12060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunningham EC, Sharland AF, Bishop GA (2013) Liver transplant tolerance and its application to the clinic: can we exploit the high dose effect? Clin Dev Immunol 2013:419692

    Google Scholar 

  • Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635

    CAS  PubMed  Google Scholar 

  • Dalton DK, Noelle RJ (2012) The roles of mast cells in anticancer immunity. Cancer Immunol Immunother 61:1511–1520

    CAS  PubMed  Google Scholar 

  • Davey GM, Kurts C, Miller JF, Bouillet P, Strasser A, Brooks AG, Carbone FR, Heath WR (2002) Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J Exp Med 196:947–955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6:269–279

    CAS  PubMed  Google Scholar 

  • Dummer CD, Carpio VN, Gonçalves LF, Manfro RC, Veronese FV (2012) FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance. Transpl Immunol 26:1–10

    CAS  PubMed  Google Scholar 

  • Dürr S, Kindler V (2013) Implication of indoleamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J Leukoc Biol 93:681–687

    PubMed  Google Scholar 

  • Ezzelarab M, Thomson AW (2011) Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 23(4):252–263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    CAS  PubMed  Google Scholar 

  • Feng S, Ekong UD, Lobritto SJ, Demetris AJ, Roberts JP, Rosenthal P, Alonso EM, Philogene MC, Ikle D, Poole KM, Bridges ND, Turka LA, Tchao NK (2012) Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA 307:283–293

    CAS  PubMed  Google Scholar 

  • Ferber I, Schonrich G, Schenkel J, Mellor AL, Hammerling GJ, Arnold B (1994) Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 263:674–676

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the fork-head transcription factor foxp3. Immunity 22:329–341

    CAS  PubMed  Google Scholar 

  • Fudaba Y, Spitzer TR, Shaffer J, Kawai T, Fehr T, Delmonico F, Preffer F, Tolkoff-Rubin N, Dey BR, Saidman SL, Kraus A, Bonnefoix T, McAfee S, Power K, Kattleman K, Colvin RB, Sachs DH, Cosimi AB, Sykes M (2006) Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant 6:2121–2133

    CAS  PubMed  Google Scholar 

  • Fung JJ (1999) Toward tolerance: lessons learned from liver transplantation. Liver Transpl Surg 5:S90–S97

    CAS  PubMed  Google Scholar 

  • Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    CAS  PubMed  Google Scholar 

  • Game DS, Lechler RI (2002) Pathways of allorecognition: implications for transplantation tolerance. Transpl Immunol 10:101–108

    CAS  PubMed  Google Scholar 

  • Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195:1641–1646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griesemer AD, Sorenson EC, Hardy MA (2010) The role of the thymus in tolerance. Transplantation 90:465–474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Hervé C, Li XL, Heslan M, Usal C, Tesson L, Ménoret S, Saoudi A, Le Mauff B, Josien R, Cuturi MC, Anegon I (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 117:1096–1106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta A, Kumar CA, Ningappa M, Sun Q, Higgs BW, Snyder S, Zeevi A, Thomson AW, Mazariegos GV, Sindhi R (2009) Elevated myeloid: plasmacytoid dendritic cell ratio associates with late, but not early, liver rejection in children induced with rabbit anti-human thymocyte globulin. Transplantation 88:589–594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta A, Ashokkumar C, Ningappa M, Sun Q, Higgs BW, Snyder S, Johnson M, Zeevi A, Abu-Elmagd KM, Thomson AW, Mazariegos GV, Sindhi R (2010) Elevated myeloid: plasmacytoid dendritic cell ratio associates with early acute cellular rejection in pediatric small bowel transplantation. Transplantation 89:55–60

    PubMed  Google Scholar 

  • Hainz U, Jurgens B, Heitger A (2007) The role of indoleamine 2,3-dioxygenase in transplantation. Transpl Int 20:118–127

    CAS  PubMed  Google Scholar 

  • Heitger A (2011) Regulation of expression and function of IDO in human dendritic cells. Curr Med Chem 18:2222–2233

    CAS  PubMed  Google Scholar 

  • Herrera OB, Golshayan D, Tibbott R, Salcido Ochoa F, James MJ, Marelli-Berg FM, Lechler RI (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173:4828–4837

    CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    CAS  PubMed  Google Scholar 

  • Hugues S, Boissonnas A, Amigorena S, Fetler L (2006) The dynamics of dendritic cell-T cell interactions in priming and tolerance. Curr Opin Immunol 18:491–495

    CAS  PubMed  Google Scholar 

  • Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    CAS  PubMed  Google Scholar 

  • Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188:2163–2173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326

    CAS  PubMed  Google Scholar 

  • Jenkins MK, Taylor PS, Norton SD, Urdahl KB (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–2466

    CAS  PubMed  Google Scholar 

  • Jia L, Tian P, Ding C (2009) Immunoregulatory effects of indoleamine 2, 3-dioxygenase in transplantation. Transpl Immunol 21:18–22

    CAS  PubMed  Google Scholar 

  • Jones LA, Chin LT, Longo DL, Kruisbeek AM (1990) Peripheral clonal elimination of functional T cells. Science 250:1726–1729

    CAS  PubMed  Google Scholar 

  • Kamada N, Wight DG (1984) Antigen-specific immunosuppression induced by liver transplantation in the rat. Transplantation 38:217–221

    CAS  PubMed  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    CAS  PubMed  Google Scholar 

  • Kishimoto H, Sprent J (1999) Several different cell surface molecules control negative selection of medullary thymocytes. J Exp Med 190:65–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    CAS  PubMed  Google Scholar 

  • Lechler RI, Batchelor JR (1982) Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 155:31–41

    CAS  PubMed  Google Scholar 

  • Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Zheng XX, Kuhr CS, Perkins JD (2005) CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am J Transplant 5:978–986

    CAS  PubMed  Google Scholar 

  • Li W, Carper K, Zheng XX, Kuhr CS, Reyes JD, Liang Y, Perkins DL, Thomson AW, Perkins JD (2006a) The role of Foxp3+ regulatory T cells in liver transplant tolerance. Transplant Proc 38:3205–3206

    CAS  PubMed  Google Scholar 

  • Li W, Carper K, Liang Y, Zheng XX, Kuhr CS, Reyes JD, Perkins DL, Thomson AW, Perkins JD (2006b) Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant Proc 38:3207–3208

    CAS  PubMed  Google Scholar 

  • Li W, Kuhr CS, Zheng XX, Carper K, Thomson AW, Reyes JD, Perkins JD (2008) New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells. Am J Transplant 8:1639–1651

    CAS  PubMed  Google Scholar 

  • Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM (2005) Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201:127–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin YC, Goto S, Tateno C, Nakano T, Cheng YF, Jawan B, Kao YH, Hsu LW, Lai CY, Yoshizato K, Chen CL (2008a) Induction of indoleamine 2,3-dioxygenase in livers following hepatectomy prolongs survival of allogeneic hepatocytes after transplantation. Transplant Proc 40:2706–2708

    CAS  PubMed  Google Scholar 

  • Lin YC, Chen CL, Nakano T, Goto S, Kao YH, Hsu LW, Lai CY, Jawan B, Cheng YF, Tateno C, Yoshizato K (2008b) Immunological role of indoleamine 2,3-dioxygenase in rat liver allograft rejection and tolerance. J Gastroenterol Hepatol 23:e243–e250

    CAS  PubMed  Google Scholar 

  • Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y-J (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    CAS  PubMed  Google Scholar 

  • Liu H, Liu L, Fletcher BS, Visner GA (2006) Sleeping beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. FASEB J 20:2384–2386

    CAS  PubMed  Google Scholar 

  • Liu XQ, Hu ZQ, Pei YF, Tao R (2013) Clinical operational tolerance in liver transplantation: state-of-the-art perspective and future prospects. Hepatobiliary Pancreat Dis Int 12:12–33

    PubMed  Google Scholar 

  • Liu H, Guan L, Li Z, Wang Z, Li W (2014) Mechanisms of murine spontaneous liver transplant tolerance. Exp Clin Transplant 12:1–8

    PubMed  Google Scholar 

  • Luan X, Liao W, Lai X, He Y, Liu Y, Gong J, Li J (2012) Dynamic changes of indoleamine 2,3-dioxygenase of Kupffer cells in rat liver transplant rejection and tolerance. Transplant Proc 44:1045–1047

    CAS  PubMed  Google Scholar 

  • Mahnke K, Bedke T, Enk AH (2007) Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell Immunol 250:1–13

    CAS  PubMed  Google Scholar 

  • Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4:665–674

    CAS  PubMed  Google Scholar 

  • Malek TR, Yu A, Zhu L, Matsutani T, Adeegbe D, Bayer AL (2008) IL-2 family of cytokines in T regulatory cell development and homeostasis. J Clin Immunol 28:635–639

    CAS  PubMed  Google Scholar 

  • Manches O, Munn D, Fallahi A, Lifson J, Chaperot L, Plumas J, Bhardwaj N (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118:3431–3439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manlapat AK, Kahler DJ, Chandler PR, Munn DH, Mellor AL (2007) Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol 37:1064–1071

    CAS  PubMed  Google Scholar 

  • McGargill MA, Derbinski JM, Hogquist KA (2000) Receptor editing in developing T cells. Nat Immunol 1:336–341

    CAS  PubMed  Google Scholar 

  • McMahon G1, Weir MR, Li XC, Mandelbrot DA (2011) The evolving role of mTOR inhibition in transplantation tolerance. J Am Soc Nephrol 22:408–415

    CAS  PubMed  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    CAS  PubMed  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morita M, Fujino M, Jiang G, Kitazawa Y, Xie L, Azuma M, Yagita H, Nagao S, Sugioka A, Kurosawa Y, Takahara S, Fung J, Qian S, Lu L, Li XK (2010) PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft. Am J Transplant 10:40–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11:21–27

    CAS  PubMed  Google Scholar 

  • Mulley WR, Nikolic-Paterson DJ (2008) Indoleamine 2,3-dioxygenase in transplantation. Nephrology (Carlton) 13:204–211

    CAS  Google Scholar 

  • Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munn DH et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    CAS  PubMed  Google Scholar 

  • Nafady-Hego H, Li Y, Ohe H, Zhao X, Satoda N, Sakaguchi S, Wood K, Uemoto S, Koshiba T (2010) The generation of donor-specific CD4+CD25++CD45RA+ naive regulatory T cells in operationally tolerant patients after pediatric living-donor liver transplantation. Transplantation 90:1547–1555

    PubMed  Google Scholar 

  • Newton K, Strasser A (2000) Cell death control in lymphocytes. Adv Immunol 76:179–226

    CAS  PubMed  Google Scholar 

  • Ohkura N, Sakaguchi S (2010) Regulatory T cells: roles of T cell receptor for their development and function. Semin Immunopathol 32:95–106

    CAS  PubMed  Google Scholar 

  • Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, Voehringer D (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206:549–559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    CAS  PubMed  Google Scholar 

  • Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, Servillo G, Brunacci C, Calvitti M, Bicciato S, Mazza EM, Boon L, Grassi F, Fioretti MC, Fallarino F, Puccetti P, Grohmann U (2011) Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 12:870–878

    CAS  PubMed  Google Scholar 

  • Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K (1993) Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178:615–622

    CAS  PubMed  Google Scholar 

  • Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B, Van den Eynde BJ (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 109:2497–2502

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pons JA, Revilla-Nuin B, Baroja-Mazo A, Ramírez P, Martínez-Alarcón L, Sánchez-Bueno F, Robles R, Rios A, Aparicio P, Parrilla P (2008) FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation 86:1370–1378

    CAS  PubMed  Google Scholar 

  • Powell JD, Lerner CG, Schwartz RH (1999) Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 162:2775–2784

    CAS  PubMed  Google Scholar 

  • Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68

    PubMed Central  CAS  PubMed  Google Scholar 

  • Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L (2008) Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci U S A 105:19869–19874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Punt JA, Osborne BA, Takahama Y, Sharrow SO, Singer A (1994) Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J Exp Med 179:709–713

    CAS  PubMed  Google Scholar 

  • Qian S, Lu L, Fu F, Li Y, Li W, Starzl TE, Fung JJ, Thomson AW (1997) Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J Immunol 158:4654–4661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen A, Davies HF, Jamieson NV, Evans DB, Calne RY (1995) Combined transplantation of liver and kidney from the same donor protects the kidney from rejection and improves kidney graft survival. Transplantation 59:919–921

    CAS  PubMed  Google Scholar 

  • Reynoso ED, Turley SJ (2009) Unconventional antigen-presenting cells in the induction of peripheral CD8(+) T cell tolerance. J Leukoc Biol 86:795–801

    CAS  PubMed  Google Scholar 

  • Roberts MS, Angus DC, Bryce CL, Valenta Z, Weissfeld L (2004) Survival after liver transplantation in the United States: a disease-specific analysis of the UNOS database. Liver Transpl 10:886–897

    PubMed  Google Scholar 

  • Rocha B, von Boehmer H (1991) Peripheral selection of the T cell repertoire. Science 251:1225–1228

    CAS  PubMed  Google Scholar 

  • Roncador G, Brown PJ, Maestre L et al (2005) Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35:1681–1691

    CAS  PubMed  Google Scholar 

  • Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261

    CAS  PubMed  Google Scholar 

  • Sadlack B, Lohler J, Schorle H et al (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 25:3053–3059

    CAS  PubMed  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  • Sakaguchi S1, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+CD4+regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    CAS  PubMed  Google Scholar 

  • Sakaguchi S1, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    CAS  PubMed  Google Scholar 

  • Sánchez-Fueyo A (2010) Identification of tolerant recipients following liver transplantation. Int Immunopharmacol 10:1501–1504

    PubMed  Google Scholar 

  • Sánchez-Fueyo A, Strom TB (2004) Immunological tolerance and liver transplantation. J Hepatol 41:698–705

    PubMed  Google Scholar 

  • Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD, Rudensky AY, Campbell DJ (2007) Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med 204:1335–1347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharland A, Shastry S, Wang C, Rokahr K, Sun J, Sheil AG, McCaughan GW, Bishop GA (1998) Kinetics of intragraft cytokine expression, cellular infiltration, and cell death in rejection of renal allografts compared with acceptance of liver allografts in a rat model: early activation and apoptosis is associated with liver graft acceptance. Transplantation 65:1370–1377

    CAS  PubMed  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    CAS  PubMed  Google Scholar 

  • Shevach EM (2011) Biological functions of regulatory T cells. Adv Immunol 112:137–176

    PubMed  Google Scholar 

  • Shevach EM, Thornton AM (2014) tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 259:88–102

    CAS  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    CAS  PubMed  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30

    CAS  PubMed  Google Scholar 

  • Singal AK, Bashar H, Anand BS, Jampana SC, Singal V, Kuo YF (2012) Outcomes after liver transplantation for alcoholic hepatitis are similar to alcoholic cirrhosis: exploratory analysis from the UNOS database. Hepatology 55:1398–1405

    PubMed  Google Scholar 

  • Steger U, Denecke C, Sawitzki B, Karim M, Jones ND, Wood KJ (2008) Exhaustive differentiation of alloreactive CD8+ T cells: critical for determination of graft acceptance or rejection. Transplantation 85:1339–1347

    PubMed  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    CAS  PubMed  Google Scholar 

  • Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci U S A 103:2611–2616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X, Gong ZJ, Wang ZW, Li T, Zhang JY, Sun HC, Liu S, Huang L, Huang C, Peng ZH (2012) IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation. J Clin Immunol 32:837–847

    CAS  PubMed  Google Scholar 

  • Swanson KA, Zheng Y, Heidler KM, Mizobuchi T, Wilkes DS (2004) CDllc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am J Respir Cell Mol Biol 30:311–318

    CAS  PubMed  Google Scholar 

  • Sykes M (2007) Immune tolerance: mechanisms and application in clinical transplantation. J Intern Med 262:288–310

    CAS  PubMed  Google Scholar 

  • Takahashi S, Kataoka H, Hara S, Yokosuka T, Takase K, Yamasaki S, Kobayashi W, Saito Y, Saito T (2005) In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection. Eur J Immunol 35:399–407

    CAS  PubMed  Google Scholar 

  • Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522

    CAS  PubMed  Google Scholar 

  • Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thebault P, Condamine T, Heslan M, Hill M, Bernard I, Saoudi A, Josien R, Anegon I, Cuturi MC, Chiffoleau E (2007) Role of IFNgamma in allograft tolerance mediated by CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells. Am J Transplant 7:2472–2482

    CAS  PubMed  Google Scholar 

  • Thornton AM, Donovan EE, Piccirillo CA, Shevach EM (2004) Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 172:6519–6523

    CAS  PubMed  Google Scholar 

  • Tokita D1, Mazariegos GV, Zahorchak AF, Chien N, Abe M, Raimondi G, Thomson AW (2008) High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 85:369–377

    PubMed  Google Scholar 

  • Trotter JF, O’Grady J (2010) Operational tolerance after liver transplantation: raising the bar or tripping up? Am J Transplant 10:2193–2194

    PubMed  Google Scholar 

  • Uhlig HH, Coombes J, Mottet C, Izcue A, Thompson C, Fanger A, Tannapfel A, Fontenot JD, Ramsdell F, Powrie F (2006) Characterization of Foxp3+CD4+CD25+and IL-10-secreting CD4+CD25+T cells during cure of colitis. J Immunol 177:5852–5860

    CAS  PubMed  Google Scholar 

  • Van Parijs L, Perez VL, Abbas AK (1998) Mechanisms of peripheral T cell tolerance. Novartis Found Symp 215:5–14, discussion 14–20, 33–40

    PubMed  Google Scholar 

  • Van Voorhis M, Fechner JH, Zhang X, Mezrich JD (2013) The aryl hydrocarbon receptor: a novel target for immunomodulation in organ transplantation. Transplantation 95:983–990

    PubMed Central  PubMed  Google Scholar 

  • Wang F, Huang CY, Kanagawa O (1998) Rapid deletion of rearranged T cell antigen receptor (TCR) Valpha-Jalpha segment by secondary rearrangement in the thymus: role of continuous rearrangement of TCR alpha chain gene and positive selection in the T cell repertoire formation. Proc Natl Acad Sci U S A 95:11834–11839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wells AD, Li XC, Li Y et al (1999) Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303–1307

    CAS  PubMed  Google Scholar 

  • Wiegard C, Frenzel C, Herkel J, Kallen KJ, Schmitt E, Lohse AW (2005) Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42:193–199

    CAS  PubMed  Google Scholar 

  • Wilczynski JR, Radwan M, Kalinka J (2008) The characterization and role of regulatory T cells in immune reactions. Front Biosci 13:2266–2274

    CAS  PubMed  Google Scholar 

  • Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    CAS  PubMed  Google Scholar 

  • Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4:pii:a006957

    Google Scholar 

  • Xu J, Wei J, Zhu X, Zhang X, Guan J, Wang J, Yin J, Xiao Y, Zhang Y (2013) Increased plasma indoleamine 2,3-dioxygenase activity and interferon-γ levels correlate with the severity of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19:196–201

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Inaba K, Tarbell KV, Steinman RM (2006) Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 212:314–329

    CAS  PubMed  Google Scholar 

  • You Q, Cheng L, Kedl RM, Ju C (2008) Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48:978–990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, Hou JZ, Negrin RS (2008) Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 111:453–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng M, Guinet E, Nouri-Shirazi M (2009) Comparative analysis of dendritic cells and anti-CD3/CD28 expanded regulatory T cells for application in transplantation. Transpl Immunol 22:82–92

    CAS  PubMed  Google Scholar 

  • Zhang GY, Hu M, Wang YM, Alexander SI (2009) Foxp3 as a marker of tolerance induction versus rejection. Curr Opin Organ Transplant 14:40–45

    PubMed  Google Scholar 

  • Zuber J, Brodin-Sartorius A, Lapidus N, Patey N, Tosolini M, Candon S, Rabant M, Snanoudj R, Panterne C, Thervet E, Legendre C, Chatenoud L (2009) FOXP3-enriched infiltrates associated with better outcome in renal allografts with inflamed fibrosis. Nephrol Dial Transplant 24:3847–3854

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engin, A., Engin, A.B. (2015). Indoleamine 2,3-Dioxygenase-Competent Regulatory Dendritic Cells and Their Role in Alloimmune Regulation and Transplant Immune Tolerance. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_14

Download citation

Publish with us

Policies and ethics