Skip to main content

Elasticity of Continental Crust Around the Mantle Transition Zone

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The fate and amount of granitic materials subducted into the deep mantle are still under debate. The density , elastic property, and phase stability of granitic materials in the mantle pressures are key to clarifying them. Here, we modeled high-pressure properties of the granitic assemblage by using ab initio mineral physics data of grossular garnet, K-hollandite, jadeite, stishovite, and calcium ferrite (CF)-type phase. We find that the ongoing subducting granitic assemblage, such as sediments and average upper crust rocks, is much denser than pyrolite in the pressure range from 9 GPa (~270 km), at which coesite undergoes a phase transition to stishovite, to around 27 GPa (~740 km). Above this pressure, granitic material becomes less dense than a pyrolite. This indicates that the granitic assemblage becomes gravitationally stable at the base of the mantle transition zone (MTZ). Results suggest a possibility that the granitic materials could accumulate around the 740 km depth if carried into the depth deeper than 270 km and segregated at some depth. Comparison of the velocities between granitic and pyrolitic materials shows that granitic materials can produce substantial velocity anomalies in the MTZ and the uppermost lower mantle (LM). Seismic observations such as anomalously fast velocities, especially for the shear wave, around the 660-km discontinuity, the complexity of 660-km discontinuity, and the scatterers in the uppermost LM could be associated with the subducted granitic materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams DJ, Oganov AR (2006) Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions on earth’s lower mantle. Phys Rev B 73:184106

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Yaguchi M, Kojitani H (2009) High-pressure phase relations and thermodynamic properties of CaAl4Si2O11 CAS phase. Phys Earth Planet Inter 173:1–6

    Article  Google Scholar 

  • Brown JM, Shankland TJ (1981) Thermodynamic parameters in the earth as determined from seismic profiles. Geophys J R Astr Soc 66:579–596

    Article  Google Scholar 

  • Campbell IH, Taylor SR (1983) No water, no granites—no oceans, no continents. Geophys Res Lett 10:1061–1064

    Google Scholar 

  • Cobden L, Goes S, Cammarano F, Connolly JAD (2008) Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys J Int 175:627–648

    Article  Google Scholar 

  • da Silva C, Stixrude L, Wentzcovitch RM (1997) Elastic constants and anisotropy of forsterite at high pressure. Geophys Res Lett 24:1963–1966

    Article  Google Scholar 

  • Davies DR, Goes S, Schuberth BSA, Bunge H-P, Ritsema J (2012) Reconciling dynamic and seismic models of earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet Sci Lett 353–354:253–269

    Article  Google Scholar 

  • Davies DR, Goes S, Lau HCP (2015) Thermally dominated deep mantle LLSVPs: a review. In: Khan A, Deschamps F (eds) The earth’s heterogeneous mantle. Springer, Berlin

    Google Scholar 

  • Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208

    Article  Google Scholar 

  • Deschamps F, Li Y, Tackley PJ (2015) Large-scale thermo-chemical structure of the deep mantle: observations and models. In Khan A, Deschamps F (eds) The earth’s heterogeneous mantle, Springer, Berlin

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212

    Article  Google Scholar 

  • Ichikawa H, Kawai K, Yamamoto S, Kameyama M (2013a) Supply rate of continental materials to the deep mantle through subduction channels. Tectonophysics 592:46–52

    Article  Google Scholar 

  • Ichikawa H, Kameyama M, Kawai K (2013b) Mantle convection with continenal drift and heat source around the mantle transition zone. Gondwana Res 24:1080–1090

    Article  Google Scholar 

  • Ichikawa H, Kawai K, Yamamoto S, Kameyama M (2015) The effect of water on supply rate of continental materials to the deep mantle through subduction channels. In: Khan A, Deschamps F (eds) The earth’s heterogeneous mantle, Springer, Berlin

    Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of earth’s mantle. Science 285:1231–1236

    Article  Google Scholar 

  • Irifune T (1987) An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behavior of the subducting slab. Earth Planet Sci Lett 86:365–376

    Article  Google Scholar 

  • Irifune T, Higo Y, Inoue T, Kono Y, Ohfuji H, Funakoshi K (2008) Sound velocities of majorite garnet and the composition of the mantle transition zone. Nature 451:814–817

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet– perovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157

    Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle. Earth Planet Sci Lett 357–358:31–41

    Article  Google Scholar 

  • Kaneshima S (2009) Seismic scatterers at the shallowest lower mantle beneath subducted slabs. Earth Planet Sci Lett 286:304–315

    Article  Google Scholar 

  • Kaneshima S, Helffrich G (2009) Lower mantle scattering profiles and fabric below Pacific subduction zones. Earth Planet Sci Lett 282:234–239

    Article  Google Scholar 

  • Karki BB, Wentzcovitch RM (2002) First-principles lattice dynamics and thermoplasticity of MgSiO3 ilmenite at high pressure. J Geophys Res 107:2267. doi:10.1029/2001JB000702

    Article  Google Scholar 

  • Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of earth’s mantle from first principles. Rev Geophys 39:507–537

    Article  Google Scholar 

  • Katsura T, Ito E (1996) Determination of Fe-Mg partitioning between perovskite and magnesiowüstite. Geophys Res Lett 23:2005–2008

    Article  Google Scholar 

  • Karato S (1997) On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Phys Earth Planet Int 99:103–111

    Article  Google Scholar 

  • Kawakatsu H, Niu F (1994) Seismic evidence for a 920-km discontinuity in the mantle. Nature 371:301–305

    Article  Google Scholar 

  • Kawai K, Konishi K, Geller RJ, Fuji N (2014) Methods for inversion of body-wave waveforms for localized three-dimensional seismic structure and an application to D″ beneath Central America. Geophys J Int 197:495–524

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2009) Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proc Natl Acad Sci USA 106:22119–22123

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2010) Ab initio investigation of high-pressure phase relation and elasticity in the NaAlSi2O6 system. Geophys Res Lett 37:L17302. doi:10.1029/2010GL044310

    Google Scholar 

  • Kawai K, Tsuchiya T (2012a) Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles. Am Mineral 97:305–314

    Google Scholar 

  • Kawai K, Tsuchiya T (2012b) First-principles investigations of elasticity and phase transition of grossular garnet. J Geophys Res 117:B02202. doi:10.1029/2011JB008529

    Google Scholar 

  • Kawai K, Tsuchiya T (2012c) High-P,T phase relations in the NaAlSi2O6 system from first principles computation. Phys Chem Min 39:305–310

    Google Scholar 

  • Kawai K, Tsuchiya T (2013) First principles study on the high-pressure phase transition and elasticity of KAlSi3O8 K-hollandite. Am Min 98:207–218

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2014) P-V-T equation of state of cubic CaSiO3 perovskite from first principles computation. J Geophys Res Solid Earth 119:2801–2809

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2015) Elasticity and phase stability of pyrope garnet from ab initio computation. Phys Earth Planet Inter 240:125–131

    Google Scholar 

  • Kawai K, Tsuchiya T, Tsuchiya J, Maruyama S (2009) Lost primordial continents. Gondwana Res 16:581–586

    Article  Google Scholar 

  • Kawai K, Yamamoto S, Tsuchiya T, Maruyama S (2013) The second continent: existence of granitic continental materials around the bottom of the mantle transition zone. Geosci Front 4:1–6

    Article  Google Scholar 

  • Kennett BLN, Widiyantoro S, van der Hilst RD (1998) Joint seismic tomography for bulk sound and shear wave speed in the earth’s mantle. J Geophys Res 103:12469–12493

    Article  Google Scholar 

  • Kiefer B, Stixrude L, Hafner J, Kresse G (2001) Structure and elasticity of wadsleyite at high pressures. Am Min 86:1387–1395

    Google Scholar 

  • Kiefer B, Stixrude L, Wentzcovitch RM (1997) Elastic constants and anisotropy of Mg2SiO4 spinal at high pressure. Geophys Res Lett 24:2841–2844

    Article  Google Scholar 

  • Komabayashi T, Maruyama S, Rino S (2009) A speculation on the structure of the D″ layer: the growth of anti-crust at the core-mantle boundary through the subduction history of the earth. Gondwana Res 15:342–353

    Article  Google Scholar 

  • Konishi K, Kawai K, Geller RJ, Fuji N (2014) Waveform inversion for localized 3-D seismic velocity structure in the lowermost mantle beneath the Western Pacific. Geophys J Int 199:1245–1267

    Article  Google Scholar 

  • Li L, Weidner DJ, Brodholt J, Price GD (2007) The effect of cation-ordering on the elastic properties of majorite: an ab initio study. Earth Planet Sci Lett 256:28–35

    Article  Google Scholar 

  • Li L, Weidner DJ, Brodholt J, Alfe D, Price GD, Caracas R, Wentzcovitch RM (2006a) Phase stability of CaSiO3 perovskite at high pressure and temperature: insights from ab initio molecular dynamics. Phys Earth Planet Inter 155:260–268

    Article  Google Scholar 

  • Li L, Weidner DJ, Brodholt J, Alfe D, Price GD, Caracas R, Wentzcovitch RM (2006b) Elasticity of CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys Earth Planet Inter 155:249–259

    Article  Google Scholar 

  • Liu J, Topor L, Zhang J, Navrotsky A, Libermann RC (1996) Calorimetric study of the coesite-stishovite transformation and calculation of the phase boundary. Phys Chem Min 23:11–16

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Maruyama S, Sawaki Y, Ebisuzaki T, Ikoma M, Omori S, Komabayashi T (2014) Initiation of leaking earth: an ultimate trigger of Cambrian explosion. Gondwana Res 25:910–944

    Article  Google Scholar 

  • Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res 117:B06304. doi:10.1029/2011JB008851

    Google Scholar 

  • Nishiyama N, Rapp RP, Irifune T, Sanehira T, Yamazaki D, Funakoshi K (2005) Stability and P-V-T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material. Phys Chem Min 32:627–637

    Article  Google Scholar 

  • Niu F, Kawakatsu H (1997) Depth variation of the mid-mantle seismic discontinuity. Geophys Res Lett 24:429–432

    Article  Google Scholar 

  • Niu F, Kawakatsu H, Fukao Y (2003) Seismic evidence for a chemical heterogeneity in the midmantle: a strong and slightly dipping seismic reflector beneath the Mariana subduction zone. J Geophys Res 108:2419. doi:10.1029/2002JB002384

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Scholl DW, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc Am Mem 200:9–32

    Article  Google Scholar 

  • Schuberth BSA, Zaroli C, Nolet G (2012) Synthetic seismograms for a synthetic earth: long-period P- and S-wave traveltime variations can be explained by temperature alone. Geophys J Int 200:1393–1412

    Article  Google Scholar 

  • Senshu H, Maruyama S, Rino S, Santosh M (2009) Role of tonalite-trodhjemite-granite (TTG) crust subduction on the mechanism of supercontinent breakup. Gondwana Res 15:433–442

    Article  Google Scholar 

  • Simmons NA, Gurrola H (2000) Multiple seismic discontinuities near the base of the transition zone in the earth’s mantle. Nature 405:559–562

    Article  Google Scholar 

  • Styles E, Davies DR, Goes S (2011) Mapping spherical seismic into physical structure: biases from 3-D phase-transition and thermal boundary-layer heterogeneity. Geophys J Int 184:1371–1378

    Article  Google Scholar 

  • Su WJ, Dziewonski AM (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys Earth Planet Inter 100:135–156

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tsuchiya T (2011) Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Phys Earth Planet Inter 188:142–149

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J (2006) Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg,Fe,Al)(Si,Al)O3. Geophys Res Lett 33:L12S04. doi:10.1029/2006GL025706

  • Tsuchiya T, Kawai K, Maruyama S (2013) Expanding-contracting earth. Geosci Front 4:341–347

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Trampert J, Deschamps F, Resovsky JS, Yuen DA (2004) Probabilistic tomography maps significant chemical heterogeneities in the lower mantle. Science 306:853–856

    Article  Google Scholar 

  • van Keken PE, Karato S, Yuen DA (1996) Rheological control of oceanic crust separation in the transition zone. Geophys Res Lett 23:1821–1824

    Article  Google Scholar 

  • Wentzcovitch RM, Tsuchiya T, Tsuchiya J (2006) MgSiO3 postperovskite at D″ condition. Proc Natl Acad Sci USA 103:543–546

    Article  Google Scholar 

  • Wu Y, Fei Y, Jin ZLX (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284

    Article  Google Scholar 

  • Yamamoto S, Senshu H, Rino S, Omori S, Maruyama S (2009) Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Res 15:443–453

    Article  Google Scholar 

  • Yu YG, Wentzcovitch RM, Tsuchiya T, Umemoto K, Weidner DJ (2007) First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett 34:L10306. doi:10.1029/2007GL029462

    Article  Google Scholar 

  • Zhou Y-Z, Yu X-W, Yang H, Zang S-X (2012) Multiplicity of the 660-km discontinuity beneath the Izu-Bonin area. Phys Earth Planet Inter 198–199:51–60

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Yamamoto, H. Ichikawa, I. Jackson, and S. Maruyama for valuable discussion. We also thank J. Brodholt and an anonymous reviewer for constructive comments, which greatly improved our manuscript. This work was completed under the support in part of KAKENHI (Grant Nos. 23540560, 24840020, and 23224012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kawai, K., Tsuchiya, T. (2015). Elasticity of Continental Crust Around the Mantle Transition Zone. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_8

Download citation

Publish with us

Policies and ethics