Skip to main content

Animal Models of Tension-Type Headache and Trigeminal Autonomic Cephalalgias

  • Chapter
Pathophysiology of Headaches

Part of the book series: Headache ((HEAD))

  • 1951 Accesses

Abstract

Primary headaches represent a common and major health problem worldwide and significantly impair patients’ quality of life; however, pathophysiological mechanisms remain obscure. While migraine is the most studied of the primary headaches, several others also exist that are differentiated from migraine by their characteristic symptomatology and pathophysiology. These include tension-type headache and the trigeminal autonomic cephalalgias, such as cluster headache. Several animal models have provided a translational knowledge on migraine pathophysiology; however, animal models for studies of other primary headaches, such as tension-type headache and cluster headache, evaluating their underlying pathophysiology are very limited. In this chapter, we will briefly review the known putative mechanisms of some of the other primary headaches and the current animal models for these headache types that are used to aid our understanding of their pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Headache Classification Committee of the International Headache Society (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808

    Google Scholar 

  2. Lanteri-Minet M, Duru G, Mudge M, Cottrell S (2011) Quality of life impairment, disability and economic burden associated with chronic daily headache, focusing on chronic migraine with or without medication overuse: a systematic review. Cephalalgia 31(7):837–850

    PubMed  Google Scholar 

  3. Raggi A, Giovannetti AM, Quintas R, D'Amico D, Cieza A, Sabariego C et al (2012) A systematic review of the psychosocial difficulties relevant to patients with migraine. J Headache Pain 13(8):595–606

    PubMed Central  PubMed  Google Scholar 

  4. Colson NJ, Lea RA, Quinlan S, Griffiths LR (2006) No role for estrogen receptor 1 gene intron 1 Pvu II and exon 4 C325G polymorphisms in migraine susceptibility. BMC Med Genet 7:12

    PubMed Central  PubMed  Google Scholar 

  5. Maher BH, Griffiths LR (2011) Identification of molecular genetic factors that influence migraine. Mol Genet Genomics 285(6):433–446

    CAS  PubMed  Google Scholar 

  6. Buzzi MG, Bonamini M, Cerbo R (1993) The anatomy and biochemistry of headache. Funct Neurol 8(6):395–402

    CAS  PubMed  Google Scholar 

  7. Buzzi MG, Bonamini M, Moskowitz MA (1995) Neurogenic model of migraine. Cephalalgia 15(4):277–280

    CAS  PubMed  Google Scholar 

  8. Rasmussen BK, Jensen R, Olesen J (1991) Questionnaire versus clinical interview in the diagnosis of headache. Headache 31(5):290–295

    CAS  PubMed  Google Scholar 

  9. Rasmussen BK, Jensen R, Olesen J (1992) Impact of headache on sickness absence and utilisation of medical services: a Danish population study. J Epidemiol Community Health 46(4):443–446

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Pikoff H (1984) Is the muscular model of headache still viable? A review of conflicting data. Headache 24(2):186–198

    CAS  PubMed  Google Scholar 

  11. Langemark M, Bach FW, Jensen TS, Olesen J (1993) Decreased nociceptive flexion reflex threshold in chronic tension-type headache. Arch Neurol 50(10):1061–1064

    CAS  PubMed  Google Scholar 

  12. Ashina M, Bendtsen L, Jensen R, Olesen J (2000) Nitric oxide-induced headache in patients with chronic tension-type headache. Brain 123(Pt 9):1830–1837

    PubMed  Google Scholar 

  13. Ashina M, Bendtsen L, Jensen R, Sakai F, Olesen J (2000) Possible mechanisms of glyceryl-trinitrate-induced immediate headache in patients with chronic tension-type headache. Cephalalgia 20(10):919–924

    CAS  PubMed  Google Scholar 

  14. Ashina M, Simonsen H, Bendtsen L, Jensen R, Olesen J (2004) Glyceryl trinitrate may trigger endogenous nitric oxide production in patients with chronic tension-type headache. Cephalalgia 24(11):967–972

    CAS  PubMed  Google Scholar 

  15. Jensen R (1999) Pathophysiological mechanisms of tension-type headache: a review of epidemiological and experimental studies. Cephalalgia 19(6):602–621

    CAS  PubMed  Google Scholar 

  16. Fumal A, Schoenen J (2008) Tension-type headache: current research and clinical management. Lancet Neurol 7(1):70–83

    CAS  PubMed  Google Scholar 

  17. Wang W, Schoenen J (1994) Reduction of temporalis exteroceptive suppression by peripheral electrical stimulation in migraine and tension-type headaches. Pain 59(3):327–334

    CAS  PubMed  Google Scholar 

  18. Schoenen J, Gerard P, De Pasqua V, Sianard-Gainko J (1991) Multiple clinical and paraclinical analyses of chronic tension-type headache associated or unassociated with disorder of pericranial muscles. Cephalalgia 11(3):135–139

    CAS  PubMed  Google Scholar 

  19. Torebjork HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448:765–780

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Torebjork HE, LaMotte RH, Robinson CJ (1984) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51(2):325–339

    CAS  PubMed  Google Scholar 

  21. Owens CM, Zhang D, Willis WD (1992) Changes in the response states of primate spinothalamic tract cells caused by mechanical damage of the skin or activation of descending controls. J Neurophysiol 67(6):1509–1527

    CAS  PubMed  Google Scholar 

  22. Hoheisel U, Mense S (1989) Long-term changes in discharge behaviour of cat dorsal horn neurones following noxious stimulation of deep tissues. Pain 36(2):239–247

    CAS  PubMed  Google Scholar 

  23. Yu XM, Mense S (1990) Response properties and descending control of rat dorsal horn neurons with deep receptive fields. Neuroscience 39(3):823–831

    CAS  PubMed  Google Scholar 

  24. Wall PD, Woolf CJ (1984) Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol 356:443–458

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Woolf CJ (1996) Windup and central sensitization are not equivalent. Pain 66(2–3):105–108

    CAS  PubMed  Google Scholar 

  26. Treede RD, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38(4):397–421

    CAS  PubMed  Google Scholar 

  27. Mense S (1993) Spinal mechanisms of muscle pain and hyperalgesia. In: Vecchiet L, Albe-Fessard D, Lindblom U, Giamberadino MA (eds) New trends in referred pain and hyperalgesia. Elsevier, Amsterdam, pp 25–34

    Google Scholar 

  28. Hoheisel U, Koch K, Mense S (1994) Functional reorganization in the rat dorsal horn during an experimental myositis. Pain 59(1):111–118

    CAS  PubMed  Google Scholar 

  29. McHaffie JG, Larson MA, Stein BE (1994) Response properties of nociceptive and low-threshold neurons in rat trigeminal pars caudalis. J Comp Neurol 347(3):409–425

    CAS  PubMed  Google Scholar 

  30. Rasmussen BK (2001) Epidemiology of headache. Cephalalgia 21(7):774–777

    CAS  PubMed  Google Scholar 

  31. Bendtsen L (2000) Central sensitization in tension-type headache – possible pathophysiological mechanisms. Cephalalgia 20(5):486–508

    CAS  PubMed  Google Scholar 

  32. Ellrich J, Fischer A, Gilsbach JM, Makowska A, Spangenberg P (2010) Inhibition of nitric oxide synthases prevents and reverses alpha, beta-meATP-induced neck muscle nociception in mice. Cephalalgia 30(10):1225–1232

    PubMed  Google Scholar 

  33. Ellrich J, Makowska A (2007) Nerve growth factor and ATP excite different neck muscle nociceptors in anaesthetized mice. Cephalalgia 27(11):1226–1235

    CAS  PubMed  Google Scholar 

  34. Makowska A, Panfil C, Ellrich J (2005) Long-term potentiation of orofacial sensorimotor processing by noxious input from the semispinal neck muscle in mice. Cephalalgia 25(2):109–116

    CAS  PubMed  Google Scholar 

  35. Makowska A, Panfil C, Ellrich J (2005) Nerve growth factor injection into semispinal neck muscle evokes sustained facilitation of the jaw-opening reflex in anesthetized mice – possible implications for tension-type headache. Exp Neurol 191(2):301–309

    CAS  PubMed  Google Scholar 

  36. Makowska A, Panfil C, Ellrich J (2006) ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice. Cephalalgia 26(6):697–706

    CAS  PubMed  Google Scholar 

  37. Ristic D, Spangenberg P, Ellrich J (2011) Acetylsalicylic acid inhibits alpha, beta-meATP-induced facilitation of neck muscle nociception in mice – implications for acute treatment of tension-type headache. Eur J Pharmacol 673(1–3):13–19

    CAS  PubMed  Google Scholar 

  38. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    CAS  PubMed  Google Scholar 

  39. Goadsby PJ, Lipton RB (1997) A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 120(Pt 1):193–209

    PubMed  Google Scholar 

  40. Irimia P, Cittadini E, Paemeleire K, Cohen AS, Goadsby PJ (2008) Unilateral photophobia or phonophobia in migraine compared with trigeminal autonomic cephalalgias. Cephalalgia 28(6):626–630

    CAS  PubMed  Google Scholar 

  41. Lai T-H, Fuh J-L, Wang S-J (2009) Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry 80:1116–1119

    PubMed  Google Scholar 

  42. Goadsby PJ (2002) Pathophysiology of cluster headache: a trigeminal autonomic cephalalgia. Lancet Neurol 1(4):251–257

    PubMed  Google Scholar 

  43. Leone M, Bussone G (2009) Pathophysiology of trigeminal autonomic cephalalgias. Lancet Neurol 8(8):755–764

    PubMed  Google Scholar 

  44. Cohen AS, Matharu MS, Goadsby PJ (2007) Trigeminal autonomic cephalalgias: current and future treatments. Headache 47(6):969–980

    PubMed  Google Scholar 

  45. May A (2006) Update on the diagnosis and management of trigemino-autonomic headaches. J Neurol 253(12):1525–1532

    CAS  PubMed  Google Scholar 

  46. May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (1998) Hypothalamic activation in cluster headache attacks. Lancet 352(9124):275–278

    CAS  PubMed  Google Scholar 

  47. Matharu MS, Cohen AS, Frackowiak RS, Goadsby PJ (2006) Posterior hypothalamic activation in paroxysmal hemicrania. Ann Neurol 59(3):535–545

    PubMed  Google Scholar 

  48. May A, Bahra A, Buchel C, Turner R, Goadsby PJ (1999) Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann Neurol 46(5):791–794

    CAS  PubMed  Google Scholar 

  49. Sprenger T, Valet M, Platzer S, Pfaffenrath V, Steude U, Tolle TR (2005) SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain 113(3):422–426

    PubMed  Google Scholar 

  50. Matharu MS, Cohen AS, McGonigle DJ, Ward N, Frackowiak RSJ, Goadsby PJ (2004) Posterior hypothalamic and brainstem activation in hemicrania continua. Headache 44:747–761

    PubMed  Google Scholar 

  51. Leone M, Proietti Cecchini A, Franzini A, Broggi G, Cortelli P, Montagna P et al (2008) Lessons from 8 years’ experience of hypothalamic stimulation in cluster headache. Cephalalgia 28(7):787–797; discussion 98

    CAS  PubMed  Google Scholar 

  52. Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345(19):1428–1429

    CAS  PubMed  Google Scholar 

  53. Goadsby PJ, Edvinsson L (1994) Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 117(Pt 3):427–434

    PubMed  Google Scholar 

  54. Goadsby PJ, Edvinsson L (1996) Neuropeptide changes in a case of chronic paroxysmal hemicrania – evidence for trigemino-parasympathetic activation. Cephalalgia 16(6):448–450

    CAS  PubMed  Google Scholar 

  55. May A, Kaube H, Buchel C, Eichten C, Rijntjes M, Juptner M et al (1998) Experimental cranial pain elicited by capsaicin: a PET study. Pain 74(1):61–66

    CAS  PubMed  Google Scholar 

  56. Bernstein C, Burstein R (2012) Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 8(2):89–99

    PubMed Central  PubMed  Google Scholar 

  57. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine – current understanding and treatment. N Engl J Med 346(4):257–270

    CAS  PubMed  Google Scholar 

  58. Akerman S, Holland PR, Goadsby PJ (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12(10):570–584

    CAS  PubMed  Google Scholar 

  59. Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD (1990) CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 534(1–2):149–169

    CAS  PubMed  Google Scholar 

  60. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T et al (2013) Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci 33(20):8827–8840

    CAS  PubMed  Google Scholar 

  61. Hosoya Y, Matsushita M, Sugiura Y (1983) A direct hypothalamic projection to the superior salivatory nucleus neurons in the rat. A study using anterograde autoradiographic and retrograde HRP methods. Brain Res 266(2):329–333

    CAS  PubMed  Google Scholar 

  62. Hosoya Y, Sugiura Y, Ito R, Kohno K (1990) Descending projections from the hypothalamic paraventricular nucleus to the A5 area, including the superior salivatory nucleus, in the rat. Exp Brain Res 82(3):513–518

    CAS  PubMed  Google Scholar 

  63. Benjamin L, Levy MJ, Lasalandra MP, Knight YE, Akerman S, Classey JD et al (2004) Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol Dis 16(3):500–505

    CAS  PubMed  Google Scholar 

  64. Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R (2001) A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci U S A 98(17):9930–9935

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Knight YE, Classey JD, Lasalandra MP, Akerman S, Kowacs F, Hoskin KL et al (2005) Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 1045(1–2):1–11

    CAS  PubMed  Google Scholar 

  66. Gray H (1918) Anatomy of the human body. Lea and Febiger, Philadelphia

    Google Scholar 

  67. Bartsch T, Levy MJ, Knight YE, Goadsby PJ (2004) Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 109(3):367–378

    CAS  PubMed  Google Scholar 

  68. Bartsch T, Levy MJ, Knight YE, Goadsby PJ (2005) Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus. Pain 117(1–2):30–39

    CAS  PubMed  Google Scholar 

  69. Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol 137(1):62–68

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Goadsby PJ, Zagami AS (1991) Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 114(Pt 2):1001–1011

    PubMed  Google Scholar 

  71. Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629(1):95–102

    CAS  PubMed  Google Scholar 

  72. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79(2):964–982

    CAS  PubMed  Google Scholar 

  73. Hoskin KL, Bulmer DCE, Lasalandra M, Jonkman A, Goadsby PJ (2001) Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation. J Anat 198:29–35

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91

    PubMed Central  PubMed  Google Scholar 

  75. Zagami AS, Lambert GA (1990) Stimulation of cranial vessels excites nociceptive neurones in several thalamic nuclei of the cat. Exp Brain Res 81(3):552–566

    CAS  PubMed  Google Scholar 

  76. Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16(2):69–75

    CAS  PubMed  Google Scholar 

  77. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ (2009) Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache 49(8):1131–1143

    PubMed  Google Scholar 

  78. Burstein R, Jakubowski M (2004) Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann Neurol 55(1):27–36

    CAS  PubMed  Google Scholar 

  79. Goadsby PJ, Hoskin KL (1996) Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain 67(2–3):355–359

    CAS  PubMed  Google Scholar 

  80. Goadsby PJ, Knight YE (1997) Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT(1B/1D)) receptors. Br J Pharmacol 122(5):918–922

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Hoskin KL, Kaube H, Goadsby PJ (1996) Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 119(Pt 5):1419–1428

    PubMed  Google Scholar 

  82. Levy D, Jakubowski M, Burstein R (2004) Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A 101(12):4274–4279

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Akerman S, Holland PR, Summ O, Lasalandra MP, Goadsby PJ (2012) A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization. Brain 135(Pt 12):3664–3675

    PubMed  Google Scholar 

  84. Kaube H, Hoskin KL, Goadsby PJ (1993) Intravenous acetylsalicylic acid inhibits central trigeminal neurons in the dorsal horn of the upper cervical spinal cord in the cat. Headache 33(10):541–544

    CAS  PubMed  Google Scholar 

  85. Jakubowski M, Levy D, Goor-Aryeh I, Collins B, Bajwa Z, Burstein R (2005) Terminating migraine with allodynia and ongoing central sensitization using parenteral administration of COX1/COX2 inhibitors. Headache 45(7):850–861

    PubMed  Google Scholar 

  86. Jakubowski M, Levy D, Kainz V, Zhang XC, Kosaras B, Burstein R (2007) Sensitization of central trigeminovascular neurons: blockade by intravenous naproxen infusion. Neuroscience 148(2):573–583

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Akerman S, Goadsby PJ (2005) Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br J Pharmacol 146(1):7–14

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Storer RJ, Goadsby PJ (2004) Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia 24(12):1049–1056

    CAS  PubMed  Google Scholar 

  89. Ekbom K (1968) Nitrolglycerin as a provocative agent in cluster headache. Arch Neurol 19(5):487–493

    CAS  PubMed  Google Scholar 

  90. Fanciullacci M, Alessandri M, Figini M, Geppetti P, Michelacci S (1995) Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60(2):119–123

    CAS  PubMed  Google Scholar 

  91. May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55(9):1328–1335

    CAS  PubMed  Google Scholar 

  92. Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels. Eur J Pharmacol 452(2):223–228

    CAS  PubMed  Google Scholar 

  93. Strecker T, Dux M, Messlinger K (2002) Increase in meningeal blood flow by nitric oxide – interaction with calcitonin gene-related peptide receptor and prostaglandin synthesis inhibition. Cephalalgia 22(3):233–241

    CAS  PubMed  Google Scholar 

  94. Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brain-stem and forebrain structures of the rat. Brain Res 682(1–2):167–181

    CAS  PubMed  Google Scholar 

  95. Koulchitsky S, Fischer MJ, De Col R, Schlechtweg PM, Messlinger K (2004) Biphasic response to nitric oxide of spinal trigeminal neurons with meningeal input in rat – possible implications for the pathophysiology of headaches. J Neurophysiol 92(3):1320–1328

    CAS  PubMed  Google Scholar 

  96. Lambert GA, Donaldson C, Boers PM, Zagami AS (2000) Activation of trigeminovascular neurons by glyceryl trinitrate. Brain Res 887(1):203–210

    CAS  PubMed  Google Scholar 

  97. Akerman S, Hoffmann J, Goadsby PJ (2013) A translational approach to studying triptan-induced reversal of established central sensitization of trigeminovascular neurons. Cephalalgia 33(8(S1)):211

    Google Scholar 

  98. Dieterle A, Fischer MJ, Link AS, Neuhuber WL, Messlinger K (2011) Increase in CGRP- and nNOS-immunoreactive neurons in the rat trigeminal ganglion after infusion of an NO donor. Cephalalgia 31(1):31–42

    PubMed  Google Scholar 

  99. Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15(11):1803–1809

    CAS  PubMed  Google Scholar 

  100. Akerman S, Goadsby PJ (2014) Acute anti-migraine treatments abort established central sensitization of trigeminovascular neurons: validation of a novel translational approach. Headache 54(S1):2–3

    Google Scholar 

  101. Summ O, Andreou AP, Akerman S, Goadsby PJ (2010) A potential nitrergic mechanism of action for indomethacin, but not other COX inhibitors – relevance to indomethacin-sensitive headaches. J Headache Pain 11(6):477–483

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Summ O, Andreou AP, Akerman S, Hoffmann J, Goadsby PJ (2011) Effects of indomethacin, naproxen and ibuprofen on no-induced trigeminal firing recorded in the trigeminocervical complex. Cephalalgia 31(S1):10

    Google Scholar 

  103. Akerman S, Kaube H, Goadsby PJ (2004) Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther 309:56–63

    CAS  PubMed  Google Scholar 

  104. Koulchitsky S, Fischer MJ, Messlinger K (2009) Calcitonin gene-related peptide receptor inhibition reduces neuronal activity induced by prolonged increase in nitric oxide in the rat spinal trigeminal nucleus. Cephalalgia 29(4):408–417

    CAS  PubMed  Google Scholar 

  105. Iversen HK, Olesen J, Tfelt-hansen P (1989) Intravenous nitroglycerin as an experimental-model of vascular headache – basic characteristics. Pain 38(1):17–24

    CAS  PubMed  Google Scholar 

  106. Gottselig R, Messlinger K (2004) Noxious chemical stimulation of rat facial mucosa increases intracranial blood flow through a trigemino-parasympathetic reflex – an experimental model for vascular dysfunctions in cluster headache. Cephalalgia 24(3):206–214

    CAS  PubMed  Google Scholar 

  107. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat – intravital microscope studies. Cephalalgia 17(4):525–531

    CAS  PubMed  Google Scholar 

  108. Goadsby PJ, MacDonald GJ (1985) Extracranial vasodilation mediated by vasoactive intestinal polypeptide (VIP). Brain Res 329(1–2):285–288

    CAS  PubMed  Google Scholar 

  109. Boni LJ, Ploug KB, Olesen J, Jansen-Olesen I, Gupta S (2009) The in vivo effect of VIP, PACAP-38 and PACAP-27 and mRNA expression of their receptors in rat middle meningeal artery. Cephalalgia 29(8):837–847

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Tassorelli MD, PhD or Simon Akerman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tassorelli, C., Greco, R., Akerman, S. (2015). Animal Models of Tension-Type Headache and Trigeminal Autonomic Cephalalgias. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics