Skip to main content

Pathophysiology of Migraine: Current Status and Future Directions

  • Chapter
Pathophysiology of Headaches

Part of the book series: Headache ((HEAD))

Abstract

Around 10 % of the global adult population has active migraine. The public health burden of migraine is high because migraine attacks are associated with temporary disability and substantial impairment in activities. As such, migraine is ranked as one of the most disabling conditions. The widespread disability produced by migraine is therefore an important target for treatment.

The hallmark of migraine is the head pain, but a plethora of other clinical symptoms is needed for a headache to be qualified as a migraine according to the current diagnostic criteria.

There has been tremendous progress in our acceptance, understanding and treatment possibilities of migraine, but to optimize migraine management, it is important that we continue to improve our understanding of the basic migraine mechanisms. An understanding of migraine pathophysiology must encompass the varied clinical symptoms and relate these findings to anatomy and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen R, Stovner LJ (2008) Epidemiology and comorbidity of headache. Lancet Neurol 7(4):354–361

    PubMed  Google Scholar 

  2. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M (2001) Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41(7):646–657

    CAS  PubMed  Google Scholar 

  3. Menken M, Munsat TL, Toole JF (2000) The global burden of disease study: implications for neurology. Arch Neurol 57(3):418–420

    CAS  PubMed  Google Scholar 

  4. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2197–2223

    PubMed  Google Scholar 

  5. Lipton RB, Stewart WF, Scher AI (2001) Epidemiology and economic impact of migraine. Curr Med Res Opin 17(Suppl 1):s4–s12

    PubMed  Google Scholar 

  6. Ligthart L, de Vries B, Smith AV, Ikram MA, Amin N, Hottenga JJ et al (2011) Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet 19(8):901–907

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42(10):869–873

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lafreniere RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16(10):1157–1160

    CAS  PubMed  Google Scholar 

  9. Deprez L, Peeters K, Van Paesschen W, Claeys KG, Claes LR, Suls A et al (2007) Familial occipitotemporal lobe epilepsy and migraine with visual aura: linkage to chromosome 9q. Neurology 68(23):1995–2002

    CAS  PubMed  Google Scholar 

  10. Tikka-Kleemola P, Artto V, Vepsalainen S, Sobel EM, Raty S, Kaunisto MA et al (2010) A visual migraine aura locus maps to 9q21-q22. Neurology 74(15):1171–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Chasman DI, Schurks M, Anttila V, de Vries B, Schminke U, Launer LJ et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43(7):695–698

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Esserlind AL, Christensen AF, Le H, Kirchmann M, Hauge AW, Toyserkani NM et al (2013) Replication and meta-analysis of common variants identifies a genome-wide significant locus in migraine. Eur J Neurol 20(5):765–772

    PubMed  Google Scholar 

  13. Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM et al (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44(7):777–782

    PubMed Central  CAS  PubMed  Google Scholar 

  14. IHS (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808

    Google Scholar 

  15. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552

    CAS  PubMed  Google Scholar 

  16. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377

    CAS  PubMed  Google Scholar 

  17. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196

    PubMed  Google Scholar 

  18. Cuenca-Leon E, Corominas R, Montfort M, Artigas J, Roig M, Bayes M et al (2009) Familial hemiplegic migraine: linkage to chromosome 14q32 in a Spanish kindred. Neurogenetics 10(3):191–198

    CAS  PubMed  Google Scholar 

  19. Riant F, Roze E, Barbance C, Meneret A, Guyant-Marechal L, Lucas C et al (2012) PRRT2 mutations cause hemiplegic migraine. Neurology 79(21):2122–2124

    CAS  PubMed  Google Scholar 

  20. Pietrobon D, Moskowitz MA (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15(6):379–393

    CAS  PubMed  Google Scholar 

  21. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1):199–210

    PubMed  Google Scholar 

  22. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T et al (2004) A Cacna1a knock-in migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710

    PubMed  Google Scholar 

  23. Eikermann-Haerter K, Dilekoz E, Kudo C, Savitz SI, Waeber C, Baum MJ et al (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119(1):99–109

    PubMed Central  CAS  PubMed  Google Scholar 

  24. van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE et al (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol 67(1):85–98

    PubMed  Google Scholar 

  25. Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T et al (2011) Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 7(6):e1002129

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    CAS  PubMed  Google Scholar 

  27. Chanda ML, Tuttle AH, Baran I, Atlin C, Guindi D, Hathaway G et al (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154(8):1254–1262

    PubMed  Google Scholar 

  28. Hullugundi SK, Ansuini A, Ferrari MD, van den Maagdenberg AM, Nistri A (2014) A hyperexcitability phenotype in mouse trigeminal sensory neurons expressing the R192Q Cacna1a missense mutation of familial hemiplegic migraine type-1 (FHM1). Neuroscience 266:244–254

    CAS  PubMed  Google Scholar 

  29. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644

    CAS  PubMed  Google Scholar 

  30. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y et al (2013) Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med 5(183):183ra56, 1–11

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Thomsen LL, Kruuse C, Iversen HK, Olesen J (1994) A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol 1(1):73–80

    CAS  PubMed  Google Scholar 

  32. Baca S, Barth A, Mody I, Charles A (ed) (2014) Optogenetic elicitation of cortical spreading depression in unanesthetized, head-restrained mice. 4th European Headache and Migraine Trust International Congress: EHMTIC 2014, Copenhagen. 18 Sept 2014

    Google Scholar 

  33. van Oosterhout F, Michel S, Deboer T, Houben T, van de Ven RC, Albus H et al (2008) Enhanced circadian phase resetting in R192Q Cav2.1 calcium channel migraine mice. Ann Neurol 64(3):315–324

    PubMed  Google Scholar 

  34. Kirchmann M, Thomsen LL, Olesen J (2006) The CACNA1A and ATP1A2 genes are not involved in dominantly inherited migraine with aura. Am J Med Genet B Neuropsychiatr Genet 141B(3):250–256

    CAS  PubMed  Google Scholar 

  35. Netzer C, Todt U, Heinze A, Freudenberg J, Zumbroich V, Becker T et al (2006) Haplotype-based systematic association studies of ATP1A2 in migraine with aura. Am J Med Genet B Neuropsychiatr Genet 141B(3):257–260

    CAS  PubMed  Google Scholar 

  36. Jen JC, Kim GW, Dudding KA, Baloh RW (2004) No mutations in CACNA1A and ATP1A2 in probands with common types of migraine. Arch Neurol 61(6):926–928

    PubMed  Google Scholar 

  37. Wieser T, Mueller C, Evers S, Zierz S, Deufel T (2003) Absence of known familial hemiplegic migraine (FHM) mutations in the CACNA1A gene in patients with common migraine: implications for genetic testing. Clin Chem Lab Med 41(3):272–275

    CAS  PubMed  Google Scholar 

  38. Martin VT, Behbehani MM (2001) Toward a rational understanding of migraine trigger factors. Med Clin North Am 85(4):911–941

    CAS  PubMed  Google Scholar 

  39. Andress-Rothrock D, King W, Rothrock J (2010) An analysis of migraine triggers in a clinic-based population. Headache 50(8):1366–1370

    PubMed  Google Scholar 

  40. Pavlovic JM, Buse DC, Sollars CM, Haut S, Lipton RB (2014) Trigger factors and premonitory features of migraine attacks: summary of studies. Headache 54(10):1670–1679

    PubMed  Google Scholar 

  41. Lipton RB, Pavlovic JM, Haut SR, Grosberg BM, Buse DC (2014) Methodological issues in studying trigger factors and premonitory features of migraine. Headache 54(10):1661–1669

    PubMed  Google Scholar 

  42. Ierusalimschy R, Moreira Filho PF (2002) Precipitating factors of migraine attacks in patients with migraine without aura. Arq Neuropsiquiatr 60(3-A):609–613

    PubMed  Google Scholar 

  43. Hauge A, Kirchmann M, Olesen J (2010) Trigger factors in migraine with aura. Cephalalgia 30(3):346–353

    CAS  PubMed  Google Scholar 

  44. Hansen JM, Hauge AW, Ashina M, Olesen J (2011) Trigger factors for familial hemiplegic migraine. Cephalalgia 31(12):1274–1281

    PubMed  Google Scholar 

  45. Kelman L (2007) The triggers or precipitants of the acute migraine attack. Cephalalgia 27(5):394–402

    CAS  PubMed  Google Scholar 

  46. Yadav RK, Kalita J, Misra UK (2010) A study of triggers of migraine in India. Pain Med 11(1):44–47

    PubMed  Google Scholar 

  47. Friedman DI, De ver Dye T (2009) Migraine and the environment. Headache 49(6):941–952

    PubMed  Google Scholar 

  48. Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep 16(3):270–277

    PubMed  Google Scholar 

  49. Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 154 Suppl 1:10.1016/j.pain.2013.07.021

  50. Hougaard A, Amin FM, Hauge AW, Ashina M, Olesen J (2013) Provocation of migraine with aura using natural trigger factors. Neurology 80(5):428–431

    PubMed  Google Scholar 

  51. Moffett AM, Swash M, Scott DF (1974) Effect of chocolate in migraine: a double-blind study. J Neurol Neurosurg Psychiatry 37(4):445–448

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Marcus DA, Scharff L, Turk D, Gourley LM (1997) A double-blind provocative study of chocolate as a trigger of headache. Cephalalgia 17(8):855–862; discussion 00

    CAS  PubMed  Google Scholar 

  53. Gibb CM, Davies PT, Glover V, Steiner TJ, Clifford Rose F, Sandler M (1991) Chocolate is a migraine-provoking agent. Cephalalgia 11(2):93–95

    CAS  PubMed  Google Scholar 

  54. May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19(2):115–127

    CAS  PubMed  Google Scholar 

  55. Edvinsson L, Goadsby PJ (1995) Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia 15(4):272–276

    CAS  PubMed  Google Scholar 

  56. Pietrobon D, Moskowitz MA (2013) Pathophysiology of migraine. Annu Rev Physiol 75:365–391

    CAS  PubMed  Google Scholar 

  57. Edvinsson L, Petersen KA (2007) CGRP-receptor antagonism in migraine treatment. CNS Neurol Disord Drug Targets 6(4):240–246

    CAS  PubMed  Google Scholar 

  58. Burstein R, Jakubowski M (2005) Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol 493(1):9–14

    PubMed  Google Scholar 

  59. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298(5871):240–244

    CAS  PubMed  Google Scholar 

  60. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J et al (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304(5922):129–135

    CAS  PubMed  Google Scholar 

  61. van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21(5):649–678

    PubMed  Google Scholar 

  62. Tajti J, Uddman R, Edvinsson L (2001) Neuropeptide localization in the “migraine generator” region of the human brainstem. Cephalalgia 21(2):96–101

    CAS  PubMed  Google Scholar 

  63. Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 14(11):1289–1303

    CAS  PubMed  Google Scholar 

  64. Eftekhari S, Edvinsson L (2011) Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 12:112

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Hostetler ED, Joshi AD, Sanabria-Bohorquez S, Fan H, Zeng Z, Purcell M et al (2013) In vivo quantification of calcitonin gene-related peptide (CGRP) receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography (PET) tracer [11C]MK-4232. J Pharmacol Exp Ther 347(2):478–486

    CAS  PubMed  Google Scholar 

  66. Cumberbatch MJ, Williamson DJ, Mason GS, Hill RG, Hargreaves RJ (1999) Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol 126(6):1478–1486

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Storer RJ, Akerman S, Goadsby PJ (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 142(7):1171–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Summ O, Charbit AR, Andreou AP, Goadsby PJ (2010) Modulation of nociceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133(Pt 9):2540–2548

    PubMed  Google Scholar 

  69. Zaidi M, Bevis PJ, Abeyasekera G, Girgis SI, Wimalawansa SJ, Morris HR et al (1986) The origin of circulating calcitonin gene-related peptide in the rat. J Endocrinol 110(1):185–190

    CAS  PubMed  Google Scholar 

  70. Hoffmann J, Wecker S, Neeb L, Dirnagl U, Reuter U (2012) Primary trigeminal afferents are the main source for stimulus-induced CGRP release into jugular vein blood and CSF. Cephalalgia 32(9):659–667

    PubMed  Google Scholar 

  71. Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58(5):698–705

    CAS  PubMed  Google Scholar 

  72. Pedersen-Bjergaard U, Nielsen LB, Jensen K, Edvinsson L, Jansen I, Olesen J (1991) Calcitonin gene-related peptide, neurokinin A and substance P: effects on nociception and neurogenic inflammation in human skin and temporal muscle. Peptides 12(2):333–337

    CAS  PubMed  Google Scholar 

  73. Sun RQ, Lawand NB, Willis WD (2003) The role of calcitonin gene-related peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin. Pain 104(1–2):201–208

    CAS  PubMed  Google Scholar 

  74. Sun RQ, Lawand NB, Lin Q, Willis WD (2004) Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin. J Neurophysiol 92(1):320–326

    CAS  PubMed  Google Scholar 

  75. Mao J, Coghill RC, Kellstein DE, Frenk H, Mayer DJ (1992) Calcitonin gene-related peptide enhances substance P-induced behaviors via metabolic inhibition: in vivo evidence for a new mechanism of neuromodulation. Brain Res 574(1–2):157–163

    CAS  PubMed  Google Scholar 

  76. Oku R, Satoh M, Fujii N, Otaka A, Yajima H, Takagi H (1987) Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res 403(2):350–354

    CAS  PubMed  Google Scholar 

  77. Russo AF (2014) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 55:533–552

    PubMed  Google Scholar 

  78. Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23(2):193–196

    CAS  PubMed  Google Scholar 

  79. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28(2):183–187

    CAS  PubMed  Google Scholar 

  80. Ashina M, Bendtsen L, Jensen R, Schifter S, Olesen J (2000) Evidence for increased plasma levels of calcitonin gene-related peptide in migraine outside of attacks. Pain 86(1–2):133–138

    CAS  PubMed  Google Scholar 

  81. Tvedskov JF, Lipka K, Ashina M, Iversen HK, Schifter S, Olesen J (2005) No increase of calcitonin gene-related peptide in jugular blood during migraine. Ann Neurol 58(4):561–568

    CAS  PubMed  Google Scholar 

  82. Ho TW, Mannix LK, Fan X, Assaid C, Furtek C, Jones CJ et al (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70(16):1304–1312

    CAS  PubMed  Google Scholar 

  83. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X et al (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 372(9656):2115–2123

    CAS  PubMed  Google Scholar 

  84. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350(11):1104–1110

    CAS  PubMed  Google Scholar 

  85. Connor KM, Shapiro RE, Diener HC, Lucas S, Kost J, Fan X et al (2009) Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology 73(12):970–977

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X et al (2014) Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 83(11):958–966

    CAS  PubMed  Google Scholar 

  87. Sixt ML, Messlinger K, Fischer MJ (2009) Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain 132(11):3134–3141

    PubMed  Google Scholar 

  88. Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M et al (2014) Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol 13(11):1100–1107

    CAS  PubMed  Google Scholar 

  89. Dodick DW, Goadsby PJ, Spierings EL, Scherer JC, Sweeney SP, Grayzel DS (2014) Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 13(9):885–892

    CAS  PubMed  Google Scholar 

  90. Jansen-Olesen I, Gulbenkian S, Engel U, Cunha e Sa M, Edvinsson L (2004) Peptidergic and non-peptidergic innervation and vasomotor responses of human lenticulostriate and posterior cerebral arteries. Peptides 25(12):2105–2114

    CAS  PubMed  Google Scholar 

  91. Baeres FM, Moller M (2004) Origin of PACAP-immunoreactive nerve fibers innervating the subarachnoidal blood vessels of the rat brain. J Cereb Blood Flow Metab 24(6):628–635

    PubMed  Google Scholar 

  92. Gulbenkian S, Uddman R, Edvinsson L (2001) Neuronal messengers in the human cerebral circulation. Peptides 22(6):995–1007

    CAS  PubMed  Google Scholar 

  93. Hansen JM, Sitarz J, Birk S, Rahmann AM, Oturai PS, Fahrenkrug J et al (2006) Vasoactive intestinal polypeptide evokes only a minimal headache in healthy volunteers. Cephalalgia 26(8):992–1003

    CAS  PubMed  Google Scholar 

  94. Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28(3):226–236

    CAS  PubMed  Google Scholar 

  95. Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J et al (2007) The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept 140(3):185–191

    CAS  PubMed  Google Scholar 

  96. Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132(Pt 1):16–25

    PubMed  Google Scholar 

  97. Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI et al (2014) Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 137(Pt 3):779–794

    PubMed  Google Scholar 

  98. Hosoya M, Onda H, Ogi K, Masuda Y, Miyamoto Y, Ohtaki T et al (1993) Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 194(1):133–143

    CAS  PubMed  Google Scholar 

  99. Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ (1993) The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 334(1):3–8

    CAS  PubMed  Google Scholar 

  100. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR et al (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50(2):265–270

    CAS  PubMed  Google Scholar 

  101. Schytz HW, Olesen J, Ashina M (2010) The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 7(2):191–196

    CAS  PubMed  Google Scholar 

  102. Giffin NJ, Ruggiero L, Lipton RB, Silberstein SD, Tvedskov JF, Olesen J et al (2003) Premonitory symptoms in migraine: an electronic diary study. Neurology 60(6):935–940

    CAS  PubMed  Google Scholar 

  103. Kelman L (2004) The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs. Headache 44(9):865–872

    PubMed  Google Scholar 

  104. Schoonman GG, Evers DJ, Terwindt GM, van Dijk JG, Ferrari MD (2006) The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 26(10):1209–1213

    CAS  PubMed  Google Scholar 

  105. Charles A (2013) The evolution of a migraine attack – a review of recent evidence. Headache 53(2):413–419

    PubMed  Google Scholar 

  106. Maniyar FH, Sprenger T, Schankin C, Goadsby PJ (2014) Photic hypersensitivity in the premonitory phase of migraine–a positron emission tomography study. Eur J Neurol 21(9):1178–1183

    CAS  PubMed  Google Scholar 

  107. Salazar G, Fragoso M, Vergez L, Sergio P, Cuello D (2011) Metoclopramide as an analgesic in severe migraine attacks: an open, single-blind, parallel control study. Recent Pat CNS Drug Discov 6(2):141–145

    CAS  PubMed  Google Scholar 

  108. Tfelt-Hansen P, Henry P, Mulder LJ, Scheldewaert RG, Schoenen J, Chazot G (1995) The effectiveness of combined oral lysine acetylsalicylate and metoclopramide compared with oral sumatriptan for migraine. Lancet 346(8980):923–926

    CAS  PubMed  Google Scholar 

  109. Bergerot A, Storer RJ, Goadsby PJ (2007) Dopamine inhibits trigeminovascular transmission in the rat. Ann Neurol 61(3):251–262

    CAS  PubMed  Google Scholar 

  110. Cao Y, Aurora SK, Nagesh V, Patel SC, Welch KM (2002) Functional MRI-BOLD of brainstem structures during visually triggered migraine. Neurology 59(1):72–78

    CAS  PubMed  Google Scholar 

  111. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241

    PubMed  Google Scholar 

  112. Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110(3):675–680

    CAS  PubMed  Google Scholar 

  113. Borsook D, Burstein R (2012) The enigma of the dorsolateral pons as a migraine generator. Cephalalgia 32(11):803–812

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Moulton EA, Becerra L, Johnson A, Burstein R, Borsook D (2014) Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One 9(4):e95508

    PubMed Central  PubMed  Google Scholar 

  115. Holland P, Goadsby PJ (2007) The hypothalamic orexinergic system: pain and primary headaches. Headache 47(6):951–962

    PubMed  Google Scholar 

  116. Hoffmann J, Supronsinchai W, Akerman S, Andreou AP, Winrow CJ, Renger J et al (2014) Evidence for orexinergic mechanisms in migraine. Neurobiol Dis 74C:137–143

    Google Scholar 

  117. Chabi A, Zhang Y, Jackson S, Cady R, Lines C, Herring WJ et al (2014) Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis. Cephalalgia 2014 Aug 8. pii: 0333102414544979. doi: 10.1177/0333102414544979 [Epub ahead of print]

  118. Russell MB, Rasmussen BK, Thorvaldsen P, Olesen J (1995) Prevalence and sex-ratio of the subtypes of migraine. Int J Epidemiol 24(3):612–618

    CAS  PubMed  Google Scholar 

  119. Russell MB, Olesen J (1996) A nosographic analysis of the migraine aura in a general population. Brain 119(Pt 2):355–361

    PubMed  Google Scholar 

  120. Leão AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7(6):359–390

    Google Scholar 

  121. Charles A, Brennan K (2009) Cortical spreading depression-new insights and persistent questions. Cephalalgia 29(10):1115–1124

    CAS  PubMed  Google Scholar 

  122. Woitzik J, Hecht N, Pinczolits A, Sandow N, Major S, Winkler MK et al (2013) Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology 80(12):1095–1102

    PubMed  Google Scholar 

  123. Drenckhahn C, Winkler MK, Major S, Scheel M, Kang EJ, Pinczolits A et al (2012) Correlates of spreading depolarization in human scalp electroencephalography. Brain 135(Pt 3):853–868

    PubMed Central  PubMed  Google Scholar 

  124. Strong AJ, Fabricius M, Boutelle MG, Hibbins SJ, Hopwood SE, Jones R et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33(12):2738–2743

    PubMed  Google Scholar 

  125. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 30(26):8807–8814

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69(5):855–865

    PubMed Central  PubMed  Google Scholar 

  128. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339(6123):1092–1095

    CAS  PubMed  Google Scholar 

  129. Noseda R, Constandil L, Bourgeais L, Chalus M, Villanueva L (2010) Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci 30(43):14420–14429

    CAS  PubMed  Google Scholar 

  130. Hansen JM, Lipton RB, Dodick DW, Silberstein SD, Saper JR, Aurora SK et al (2012) Migraine headache is present in the aura phase: a prospective study. Neurology 79(20):2044–2049

    PubMed Central  PubMed  Google Scholar 

  131. Wolff H (1963) Headache and other head pain. Oxford University Press, New York

    Google Scholar 

  132. Mayberg M, Langer RS, Zervas NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man. Science 213(4504):228–230

    CAS  PubMed  Google Scholar 

  133. Liu-Chen LY, Mayberg MR, Moskowitz MA (1983) Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 268(1):162–166

    CAS  PubMed  Google Scholar 

  134. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690

    PubMed  Google Scholar 

  135. Cushing H (1904) The sensory distribution of the fifth cranial nerve. Bull Johns Hopk Hosp XV:213–232

    Google Scholar 

  136. Ray B, Wolff H (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41:813–856

    Google Scholar 

  137. Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J et al (2008) Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain 9(3):151–157

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD (2008) Migraine headache is not associated with cerebral or meningeal vasodilatation–a 3T magnetic resonance angiography study. Brain 131(Pt 8):2192–2200

    CAS  PubMed  Google Scholar 

  139. Asghar MS, Hansen AE, Amin FM, van der Geest RJ, van der Koning P, Larsson HBW et al (2011) Evidence for a vascular factor in migraine. Ann Neurol 69(4):635–645

    PubMed  Google Scholar 

  140. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660

    CAS  PubMed  Google Scholar 

  141. Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS et al (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62(8):1270–1275

    PubMed  Google Scholar 

  142. Ahn AH (2010) On the temporal relationship between throbbing migraine pain and arterial pulse. Headache 50(9):1507–1510

    PubMed Central  PubMed  Google Scholar 

  143. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA, de Koning PJ et al (2013) Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol 12(5):454–461

    PubMed  Google Scholar 

  144. Farkkila M, Diener HC, Geraud G, Lainez M, Schoenen J, Harner N et al (2012) Efficacy and tolerability of lasmiditan, an oral 5-HT(1F) receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallel-group, dose-ranging study. Lancet Neurol 11(5):405–413

    PubMed  Google Scholar 

  145. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR (2009) Neurobiology of migraine. Neuroscience 161(2):327–341

    CAS  PubMed  Google Scholar 

  146. Goadsby PJ, Akerman S (2012) The trigeminovascular system does not require a peripheral sensory input to be activated–migraine is a central disorder. Focus on ‘Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system’. Cephalalgia 32(1):3–5

    PubMed  Google Scholar 

  147. Burstein R, Strassman A, Moskowitz M (2012) Can cortical spreading depression activate central trigeminovascular neurons without peripheral input? Pitfalls of a new concept. Cephalalgia 32(6):509–511

    PubMed Central  PubMed  Google Scholar 

  148. Levy D (2010) Migraine pain and nociceptor activation–where do we stand? Headache 50(5):909–916

    PubMed  Google Scholar 

  149. Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38(1):17–24

    CAS  PubMed  Google Scholar 

  150. Ashina M, Hansen JM (2010) Pharmacological migraine provocation: a human model of migraine. Handb Clin Neurol 97:773–779

    PubMed  Google Scholar 

  151. Olesen J, Tfelt-Hansen P, Ashina M (2009) Finding new drug targets for the treatment of migraine attacks. Cephalalgia 29(9):909–920

    CAS  PubMed  Google Scholar 

  152. Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J (1997) Nitric oxide synthase inhibition in migraine. Lancet 349(9049):401–402

    CAS  PubMed  Google Scholar 

  153. Read SJ, Hirst WD, Upton N, Parsons AA (2001) Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res 891(1–2):69–77

    CAS  PubMed  Google Scholar 

  154. Schwedt TJ, Larson-Prior L, Coalson RS, Nolan T, Mar S, Ances BM et al (2013) Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 15(1):154–165

    PubMed Central  PubMed  Google Scholar 

  155. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70(5):838–845

    PubMed Central  PubMed  Google Scholar 

  156. Shuhendler AJ, Lee S, Siu M, Ondovcik S, Lam K, Alabdullatif A et al (2009) Efficacy of botulinum toxin type A for the prophylaxis of episodic migraine headaches: a meta-analysis of randomized, double-blind, placebo-controlled trials. Pharmacotherapy 29(7):784–791

    CAS  PubMed  Google Scholar 

  157. Jackson JL, Kuriyama A, Hayashino Y (2012) Botulinum toxin A for prophylactic treatment of migraine and tension headaches in adults: a meta-analysis. JAMA 307(16):1736–1745

    CAS  PubMed  Google Scholar 

  158. Burstein R, Zhang X, Levy D, Aoki KR, Brin MF (2014) Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. Cephalalgia 34(11):853–869

    PubMed Central  PubMed  Google Scholar 

  159. Dahlem MA, Hadjikhani N (2009) Migraine aura: retracting particle-like waves in weakly susceptible cortex. PLoS One 4(4):e5007

    PubMed Central  PubMed  Google Scholar 

  160. Fauci A, Braunwald E, Kasper DL et al (2008) Harrison’s principles of internal medicine, 17th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakob Møller Hansen MD, PhD or Dan Levy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansen, J.M., Levy, D. (2015). Pathophysiology of Migraine: Current Status and Future Directions. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics