Skip to main content

Abstract

In this chapter, we consider the simplified GRN model, with the assumption that it is under delayed positive feedback. By analyzing the fixed points of a single function determined from the nonlinear connections, we show that the system may have three equilibrium points in the positive cone. When the system has a unique equilibrium, generically all solutions converge to this point. When there are three equilibrium points, the system shows a bistable behavior. Homogenous GRNs under delayed positive feedback are analyzed, and their stability and bistability are determined from the parameters of the Hill function used in the nonlinear coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ahsen, H. Özbay, and S.-I. Niculescu, “On the analysis of a dynamical model representing gene regulatory networks under negative feedback,” International Journal of Robust and Nonlinear Control, vol. 24, pp. 1609–1627, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. E. Ahsen, “Analysis of two types of cyclic biological system models with time delays,” Master’s thesis, Bilkent University, 2011.

    Google Scholar 

  3. M. E. Ahsen, H. Özbay, and S.-I. Niculescu, “Analysis of gene regulatory networks under positive feedback,” in Delay Systems: From Theory to Numerics and Applications. T. Vyhlidal, J-F. Lafay, R. Sipahi (Eds.), Springer, 2014, pp. 127–140.

    Google Scholar 

  4. J. D. Watson and F. H. Crick, “Molecular structure of nucleic acids,” Nature, vol. 171, pp. 737–738, 1953.

    Article  Google Scholar 

  5. International Human Genome Sequencing Consortium, “Finishing the euchromatic sequence of the human genome,” Nature, vol. 431, no. 7011, pp. 931–945, 2004.

    Article  Google Scholar 

  6. The Cancer Genome Atlas, http://cancergenome.nih.gov/, 2013.

  7. A. Tozeren and S. W. Byers, New Biology for Engineers and Computer Scientists. Prentice Hall, 2003.

    Google Scholar 

  8. L. Ma, J. Wagner, J. J. Rice, W. Hu, A. J. Levine, and G. A. Stolovitzky, “A plausible model for the digital response of p53 to DNA damage,” Proceedings of the National Academy of Sciences of the USA (PNAS), vol. 102, no. 40, pp. 14266–14271, 2005.

    Article  Google Scholar 

  9. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

    Google Scholar 

  10. H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

    MATH  Google Scholar 

  12. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer, 2009.

    Google Scholar 

  13. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using support vector machines,” Machine Learning, vol. 46, no. 1–3, pp. 389–422, 2002.

    Article  MATH  Google Scholar 

  14. P. S. Bradley and O. L. Mangasarian, “Feature selection via concave minimization and support vector machines.” in 15th International Conference on Machine Learning (ICML ’98), 1998, pp. 82–90.

    Google Scholar 

  15. M. E. Ahsen, N. K. Singh, T. Boren, M. Vidyasagar, and M. A. White, “A new feature selection algorithm for two-class classification problems and application to endometrial cancer,” in 51st IEEE Conference on Decision and Control (CDC 2012), December 2012, pp. 2976–2982.

    Google Scholar 

  16. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science, vol. 297, no. 5584, pp. 1183–1186, 2002.

    Article  Google Scholar 

  17. P. E. Purnick and R. Weiss, “The second wave of synthetic biology: from modules to systems,” Nature Reviews Molecular Cell Biology, vol. 10, no. 6, pp. 410–422, 2009.

    Article  Google Scholar 

  18. C. Troein, “Gene regulatory networks: Dynamics and stability,” Ph.D. dissertation, Lund University, 2007.

    Google Scholar 

  19. A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera, and A. Califano, “Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context,” BMC Bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.

    Google Scholar 

  20. N. Singh, M. E. Ahsen, S. Mankala, M. Vidyasagar, and M. White, “Inferring weighted and directed gene interaction networks from gene expression data using the phi-mixing coefficient,” in 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS 2012). IEEE, 2012, pp. 168–171.

    Google Scholar 

  21. M. E. Ahsen and M. Vidyasagar, “On the computation of mixing coefficients between discrete-valued random variables,” in 9th Asian Control Conference (ASCC 2013), Istanbul, Turkey, 2013.

    Google Scholar 

  22. M. E. Ahsen and M. Vidyasagar, “Mixing coefficients between discrete and real random variables: Computation and properties.” IEEE Transactions on Automatic Control, vol. 59, no. 1, pp. 34–47, 2014.

    Article  MathSciNet  Google Scholar 

  23. H. Özbay, Introduction to Feedback Control Theory. CRC Press, 1999.

    Google Scholar 

  24. W. Michiels and S.-I. Niculescu, Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM, 2007.

    Google Scholar 

  25. A. Polynikis, S. Hogan, and M. di Bernardo, “Comparing different ode modelling approaches for gene regulatory networks,” Journal of Theoretical Biology, vol. 261, no. 4, pp. 511–530, 2009.

    Article  MathSciNet  Google Scholar 

  26. S. Widder, J. Schicho, and P. Schuster, “Dynamic patterns of gene regulation I: simple two-gene systems,” Journal of Theoretical Biology, vol. 246, no. 3, pp. 395–419, 2007.

    Article  MathSciNet  Google Scholar 

  27. M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke, “Gene regulatory network inference: data integration in dynamic models – a review,” Biosystems, vol. 96, no. 1, pp. 86–103, 2009.

    Article  Google Scholar 

  28. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, 1997.

    Google Scholar 

  29. M. R. Roussel, “The use of delay differential equations in chemical kinetics,” The Journal of Physical Chemistry, vol. 100, no. 20, pp. 8323–8330, 1996.

    Article  Google Scholar 

  30. T. olde Scheper, D. Klinkenberg, C. Pennartz, and J. Van Pelt, “A mathematical model for the intracellular circadian rhythm generator,” The Journal of Neuroscience, vol. 19, no. 1, pp. 40–47, 1999.

    Google Scholar 

  31. E. D. Sontag, “Asymptotic amplitudes and cauchy gains: a small-gain principle and an application to inhibitory biological feedback,” Systems & Control Letters, vol. 47, no. 2, pp. 167–179, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Chu, N. R. Zabet, and B. Mitavskiy, “Models of transcription factor binding: sensitivity of activation functions to model assumptions,” Journal of Theoretical Biology, vol. 257, no. 3, pp. 419–429, 2009.

    Article  Google Scholar 

  33. H. De Jong, “Modeling and simulation of genetic regulatory systems: a literature review,” Journal of Computational Biology, vol. 9, no. 1, pp. 67–103, 2002.

    Article  Google Scholar 

  34. L. Chen and K. Aihara, “Stability of genetic regulatory networks with time delay,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no. 5, pp. 602–608, 2002.

    Article  MathSciNet  Google Scholar 

  35. C.-I. Morarescu and S.-I. Niculescu, “Some remarks on the delay effects on the stability of biochemical networks,” in 16th Mediterranean Conference on Control and Automation. IEEE, 2008, pp. 801–805.

    Google Scholar 

  36. K. Wang, L. Wang, Z. Teng, and H. Jiang, “Stability and bifurcation of genetic regulatory networks with delays,” Neurocomputing, vol. 73, no. 16, pp. 2882–2892, 2010.

    Article  Google Scholar 

  37. J. Gebert, N. Radde, and G.-W. Weber, “Modeling gene regulatory networks with piecewise linear differential equations,” European Journal of Operational Research, vol. 181, no. 3, pp. 1148–1165, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Sedaghat, Nonlinear Difference Equations: theory with applications to social science models. Springer, 2003.

    Google Scholar 

  39. S. Müller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, and P. Schuster, “A generalized model of the repressilator,” Journal of Mathematical Biology, vol. 53, no. 6, pp. 905–937, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Verdugo, “Dynamics of gene networks with time delays,” Ph.D. dissertation, Cornell University, 2009.

    Google Scholar 

  41. G. A. Enciso, “On the asymptotic behavior of a cyclic biochemical system with delay,” in 45th IEEE Conference on Decision and Control, pp. 2388–2393, 2006.

    Google Scholar 

  42. D. Angeli and E. D. Sontag, “Multi-stability in monotone input/output systems,” Systems & Control Letters, vol. 51, no. 3, pp. 185–202, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  43. E. Liz, M. Pinto, G. Robledo, S. Trofimchuk, and V. Tkachenko, “Wright type delay differential equations with negative Schwarzian,” Dynamical Systems, vol. 9, no. 2, pp. 309–321, 2003.

    MATH  MathSciNet  Google Scholar 

  44. K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems. Birkhauser, 2003.

    Google Scholar 

  45. J. K. Hale, and S. M. Verduyn Lunel, Introduction to Functional Differential Equations. Springer, 1993, vol. 99.

    Google Scholar 

  46. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry. W. H. Freeman and Company: New York, 2002.

    Google Scholar 

  47. M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000.

    Article  Google Scholar 

  48. F. Alves and R. Dilão, “A simple framework to describe the regulation of gene expression in prokaryotes,” Comptes Rendus Biologies, vol. 328, no. 5, pp. 429–444, 2005.

    Article  Google Scholar 

  49. J. Mallet-Paret and G. R. Sell, “The Poincaré–Bendixson theorem for monotone cyclic feedback systems with delay,” Journal of Differential Equations, vol. 125, no. 2, pp. 441–489, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  50. Y. Hori, M. Takada, and S. Hara, “Biochemical oscillations in delayed negative cyclic feedback: Existence and profiles,” Automatica, vol. 49, no. 9, pp. 2581–2590, 2013.

    Article  MathSciNet  Google Scholar 

  51. D. Allwright, “A global stability criterion for simple control loops,” Journal of Mathematical Biology, vol. 4, no. 4, pp. 363–373, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  52. M. Mackey, “Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis,” Blood, vol. 51, no. 5, p. 941, 1978.

    Google Scholar 

  53. E. D. Sontag, “Passivity gains and the secant condition for stability,” Systems & Control Letters, vol. 55, no. 3, pp. 177–183, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  54. M. Arcak and E. D. Sontag, “Diagonal stability of a class of cyclic systems and its connection with the secant criterion,” Automatica, vol. 42, no. 9, pp. 1531–1537, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  55. H. K. Wimmer, “Diagonal stability of matrices with cyclic structure and the secant condition,” Systems & Control Letters, vol. 58, no. 5, pp. 309–313, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  56. T.-H. Kim, Y. Hori, and S. Hara, “Robust stability analysis of gene–protein regulatory networks with cyclic activation–repression interconnections,” Systems & Control Letters, vol. 60, no. 6, pp. 373–382, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  57. R. Wang, Z. Jing, and L. Chen, “Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems,” Bulletin of Mathematical Biology, vol. 67, no. 2, pp. 339–367, 2005.

    Article  MathSciNet  Google Scholar 

  58. J. Wagner and G. Stolovitzky, “Stability and time-delay modeling of negative feedback loops,” Proceedings of the IEEE, vol. 96, no. 8, pp. 1398–1410, 2008.

    Article  Google Scholar 

  59. A. Verdugo, P. Vinod, J. J. Tyson, and B. Novak, “Molecular mechanisms creating bistable switches at cell cycle transitions,” Open Biology, vol. 3, no. 3, p. 120179, 2013.

    Google Scholar 

  60. M. W. Hirsch and H. Smith, “Monotone dynamical systems,” in Handbook of Differential Equations, Ordinary Differential Equations, vol. 2, D. P. Cañada, A. and A. Fonda, Eds., pp. 239–357, Elsevier, 2005.

    Google Scholar 

  61. G. A. Enciso, “A dichotomy for a class of cyclic delay systems,” Mathematical Biosciences, vol. 208, pp. 63–75, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  62. G. A. Enciso and E. D. Sontag, “Monotone bifurcation graphs,” Journal of Biological Dynamics, vol. 2, no. 2, pp. 121–139, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  63. H. L. Smith, Monotone Dynamical Systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Soc., 1995, vol. 41.

    Google Scholar 

  64. T. Hunt, B. R. Sauer and J. A. Yorke, “Prevalence: A translation-invariant “almost every” on infinite-dimensional spaces,” Bulletin of the American Mathematical Society, vol. 27, no. 2, pp. 217–237, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  65. W. Ott and J. A. Yorke, “Prevalence,” Bulletin of the American Mathematical Society, vol. 42, no. 3, pp. 263–290, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  66. T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–342, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Ahsen, M.E., Özbay, H., Niculescu, SI. (2015). Gene Regulatory Networks Under Positive Feedback. In: Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays. SpringerBriefs in Electrical and Computer Engineering(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-15606-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15606-4_6

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-15605-7

  • Online ISBN: 978-3-319-15606-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics