Skip to main content

A Scalable Network Proximity Estimate Algorithm for the Service Provider Selection Method

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8944))

Included in the following conference series:

  • 3952 Accesses

Abstract

With the increasing development of overlay service network which contributes a significant portion of today’s network traffic, the selection of good service providers becomes more and more essential. In the selection, network distance is a very important parameter, and estimating network proximity is part of the network distance estimation. Although there exists a number of network proximity estimation technologies, they either require the distance measurement to all the potential targets, or fail when some landmark nodes are not available at a given instant of time. In this paper, we propose a network proximity technique that uses information obtained from probing a small number of landmarks. We firstly partite all the notes into different clusters based on their level vector such that nodes that fall within the same given cluster are relatively closer than those in the different clusters in terms of network latency. Then, for each cluster, the vector distance between the client and each service provider is combined with their ISP information to determine the K closest ones for the selection of the good service providers to consult. Our network proximity estimation strategy is simple, scalable, distributed with little support from the measurement infrastructures and no direct communications between the client and the service providers, and most importantly, it works well when some landmarks are invalid. Our strategy is tested using simulation. Our results indicate that the performance of network distance estimation in the service provider selection can be significantly improved by our scheme with limited measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliveira,T., Fernandez, M.: Fuzzy Redirection Algorithm for Content Delivery Network (CDN). In: The Twelfth International Conference on Networks, pp.137–143 (2013)

    Google Scholar 

  2. Wang, Zheng, Wang, Rui: Optimizing DNS Server Selection, Applied Mathematics & Information Sciences. Appl. Math. Inf. Sci. 7, 2233–2240 (2013)

    Article  Google Scholar 

  3. Huffaker, B., Fomenkov, M., Plummer, D., Moore, D., Claffy, K.: Distance metrics in the internet. In: Proc. Of IEEE International Telecommunications Symposium (ITS), Natal/Brazil (2002)

    Google Scholar 

  4. Rimac, Ivica, Borst, Sem: Anwar Walid. Peer-assisted content distribution networks, performance gains and server capacity savings Bell Labs Technical Journal - BLTJ 13, 59–69 (2008)

    Google Scholar 

  5. Olshefski, D., Nieh, J., Agrawal, D.: Using certes to infer client response time at the web server. ACM Transactions on Computer Systems (TOCS) 22, 49–93 (2004)

    Article  Google Scholar 

  6. Sivasubramanian, S., Szymaniak, M., Pierre, G., Steen, M.: Replication for web hosting systems. ACM Computing Surveys (CSUR) 36, 291–334 (2004)

    Article  Google Scholar 

  7. Zadeh, L.: Fuzzy sets. Information and control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. 王意洁, 李小勇.网络距离预测技术研究. Journal of Software, vol. 20, pp. 1574−1590 (2009)

    Google Scholar 

  9. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: A global internet host distance estimation service. IEEE INFOCOM-INFOCOM 9, 525–540 (2001)

    Google Scholar 

  10. Theilmann, W., Rothermel, K.: Dynamic distance maps of the Interact (2000)

    Google Scholar 

  11. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: Estimating latency between arbitrary Internet end hosts, Computer Communication Review-CCR, pp.5–18 (2002)

    Google Scholar 

  12. Leonard, D., Loguinov, D.: Turbo King: Framework for large-scale internet delay measurements. IEEE INFOCOM-INFOCOM, pp. 31–35 (2008)

    Google Scholar 

  13. Srinivasan, S., Zegura, E.: M-Coop: a scalable infrastructure for network measurement. In: IEEE Workshop on Internet Applications-WIAPP, pp. 35–39 (2003)

    Google Scholar 

  14. Wong, B., Slivkins, A., Sirer, E.G.: Meridian: a lightweight network location service without virtual coordinates. In: ACM SIGCOM Conference – SIGCOMM, pp. 85–96 (2005)

    Google Scholar 

  15. Sharma, P., Xu, Z., Banerjee, S., Lee, S.J.: Estimating network proximity and latency, Computer Communication Review – CCR, vol. 36, pp. 39–50 (2006)

    Google Scholar 

  16. Chen, Y., Lira, K.H., Katz, R.H., Overton, C.: On the stability of network distance estimation, Sigmetrics Performance Evaluation Review – SIGMETRICS, vol. 30, pp. 21–30 (2002)

    Google Scholar 

  17. Guyton, J.D., Schwartz, M.F.: Locating nearby copies of replicated Internet servers, Computer Communication Review – CCR, vol. 25, pp. 288–298 (1995)

    Google Scholar 

  18. Ng, T.S., Zhang, H.: Predicting Internet network distance with coordinates-based approaches. IEEE INFOCOM-INFOCOM 1, 170–179 (2002)

    Google Scholar 

  19. Ng, T.S., Zhang, H.: A network positioning system for the Internet. USENIX Technical Conference – USENIX, pp. 141–154 (2004)

    Google Scholar 

  20. Lim, H., Hou, J.C.: Choi CH, pp. 129–142. Internet Measurement Workshop, Constructing Internet coordinate system based on delay measurement (2003)

    Google Scholar 

  21. Tang, L., Crovella, M.: Virtual landmarks for the Internet. Internet Measurement Workshop, pp. 143–152 (2003)

    Google Scholar 

  22. Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. Computer Communication Review – CCR 33, 101–106 (2003)

    Article  Google Scholar 

  23. Pias, M., Crowcroft, J., Wilbur, S., Harris, T., Kaashoek, M.F.: Lighthouses for Scalable Distributed Location. In: Bhatti, S., Stoica, I. (eds.) Peer-to-Peer Systems II. Lecture Notes in Computer Science, vol. 2735, pp. 278–291. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Zhang, R., Hu, Y.C., Lin, X., Fahmy, S.: A hierarchical approach to Internet distance prediction. In: International Conference on Distributed Computing Systems – ICDCS, pp. 73–81 (2006)

    Google Scholar 

  25. Shavitt, Y., Tankel, T.: Big-Bang simulation for embedding network distances in euclidean space. IEEE/ACM Transactions on Networking – TON 12, 993–1006 (2004)

    Article  Google Scholar 

  26. Shavitt, Y., Tankel, T.: On the curvature of the Internet and its usage for overlay construction and distance estimation. IEEE INFOCOM – INFOCOM, vol. 1, (2004)

    Google Scholar 

  27. Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance estimation and overlay construction. IEEE/ACM Transactions on Networking – TON 16, 25–36 (2008)

    Article  Google Scholar 

  28. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. Computer Communication Review – CCR 34, 15–26 (2004)

    Article  Google Scholar 

  29. Costa, M., Castro, M., Rowstron, R., Key, P.: PIC: practical internet coordinates for distance estimation. In: International Conference on Distributed Computing Systems – ICDCS, pp. 178–187 (2004)

    Google Scholar 

  30. Mao, Y., Saul, L.K., Smith, J.M.: IDES: an internet distance estimation service for large networks. IEEE Journal on Selected Areas in Communications – JSAC 24, 2273–2284 (2006)

    Article  Google Scholar 

  31. Lehman, L., Lerman, S.: PCoord: Network position estimation using peer-to-peer measurements. Network Computing and Applications – NCA, pp. 15–24 (2004)

    Google Scholar 

  32. Wei, L., Lerman, S.: A decentralized network coordinate system for robust internet distance. In: International Conference on Information Technology: New Generations – ITNG, pp. 631–637 (2006)

    Google Scholar 

  33. Xing, C., Chen, M.: HNDP: A novel network distance prediction mechanism. Network and Parallel Computing –NPC, pp. 425–434 (2007)

    Google Scholar 

  34. Yan, C., Randy, K.: Tomography-Based overlay network monitoring. Internet Measuremtent Workshop, pp. 216–231 (2001)

    Google Scholar 

  35. Madhyastha, H.V., Anderson, T., Krishnamurthy, A., Spring, N., Venkataramani, A.: A structural approach to latency prediction. The ACM SIGCOMM Conf. on Internet Measurement (IMC). ACM Press, New York, pp. 99−104 (2006)

    Google Scholar 

  36. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: An information plane for distributed services. Operating Systems Design and Implementation –OSDI, pp. 367–380 (2006)

    Google Scholar 

  37. Sharma, P., Xu, Z., Banerjee, S., Lee, S.J.: Estimating network proximity and latency. ACM SIGCOMM Computer Communication Review, pp. 39–50 (2006)

    Google Scholar 

  38. Freedman, M.J., Lakshminarayanan, K., Mazieres, D.: OASIS: Anycast for any service. In: The 3rd Conf. on Networked Systems Design & Implementation (2006)

    Google Scholar 

  39. Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y.: Advances in network simulation, Computer, vol. 33, pp. 59–67 (2000)

    Google Scholar 

  40. Motwani, R., Raghavan, P.: Randomized algorithms. IEEE INFOCOM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, T., Xu, K., Song, M. (2015). A Scalable Network Proximity Estimate Algorithm for the Service Provider Selection Method. In: Zu, Q., Hu, B., Gu, N., Seng, S. (eds) Human Centered Computing. HCC 2014. Lecture Notes in Computer Science(), vol 8944. Springer, Cham. https://doi.org/10.1007/978-3-319-15554-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15554-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15553-1

  • Online ISBN: 978-3-319-15554-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics