Skip to main content

The Role of Oxidative Stress in Hepatocarcinogenesis

  • Chapter
Book cover Studies on Hepatic Disorders

Abstract

Various mechanisms contribute to ethanol-mediated hepatocarcinogenesis including the development of hepatic cirrhosis, oxidative stress, the action of acetaldehyde, the first oxidative metabolite of ethanol oxidation with its effect on the antioxidative defense and DNA repair systems and on epigenetics, additional epigenic alterations due to effects of ethanol on DNA/histone acetylation and deacetylation, the reduction of retinol and retinoic acid associated with hyperproliferation and the loss of cell differentiation, changes in intercellular signal transduction pathways, and immunosuppression. Reactive oxygen species (ROS) can be produced through a number of enzymatic and non-enzymatic reactions resulting finally in DNA damage. Cytochrome P-4502E1 induced by chronic ethanol consumption generates ROS with oxidative DNA damage and lipid peroxidation. Lipid peroxidation products such as 4-hydroxynonenal bind to DNA and create highly carcinogenic etheno DNA adducts. Oxidative stress may be indirectly enhanced by acetaldehyde and by an ethanol-mediated loss of retinol and retinoic acid. Finally, hepatic iron contributes to oxidative stress. Chronic ethanol intake increases liver iron by changing the regulation of its retention and uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    Article  PubMed  Google Scholar 

  2. Rehm J, Room R, Monteiro R et al (2004) Global and regional burden of disease attributable to selected major risk factors. In: Ezatti M, Murray C, Lopez AD, Rodgers A, Murray C (eds) Comparative quantification of health risks. World Health Organization, Geneva

    Google Scholar 

  3. Rehm J, Klotsche J, Patra J (2007) Comparative quantification of alcohol exposure as risk factor for global burden of disease. Int J Methods Psychiatr Res 16:66–76

    Article  PubMed  Google Scholar 

  4. Baan R, Straif K, Grosse Y et al (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8:292–293

    Article  PubMed  Google Scholar 

  5. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7:599–612

    Article  CAS  PubMed  Google Scholar 

  6. Zakhari S, Vasiliou V, Guo M (2011) Alcohol and cancer. Springer, New York

    Book  Google Scholar 

  7. Beland FA, Benson RW, Mellick PW et al (2005) Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem Toxicol 43:1–19

    Article  CAS  PubMed  Google Scholar 

  8. IARC (2007) IARC monographs on the evaluation of carcinogenic risks to humans. In: Alcohol consumption and ethyl carbamate, vol 96. IARC, Lyon

    Google Scholar 

  9. Chavez PR, Lian F, Chung J et al (2011) Long-term ethanol consumption promotes hepatic tumorigenesis but impairs normal hepatocyte proliferation in rats. J Nutr 141:1049–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ye Q, Lian F, Chavez PR et al (2012) Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats. Hepatobiliary Surg Nutr 1:5–18

    PubMed Central  PubMed  Google Scholar 

  11. Tsuchishima M, George J, Shiroeda H et al (2013) Chronic ingestion of ethanol induces hepatocellular carcinoma in mice without additional hepatic insult. Dig Dis Sci 58:1923–1933

    Article  CAS  PubMed  Google Scholar 

  12. De Lima VM, Oliveira CP, Alves VA et al (2008) A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. J Hepatol 49:1055–1061

    Article  PubMed  CAS  Google Scholar 

  13. Nakanuma Y, Ohta G (1985) Is mallory body formation a preneoplastic change? A study of 181 cases of liver bearing hepatocellular carcinoma and 82 cases of cirrhosis. Cancer 55:2400–2405

    Article  CAS  PubMed  Google Scholar 

  14. Smith P, Tee LBG, Yeoh GCT (1996) Appearance of oval cells in the liver of rats after long-term exposure to ethanol. Hepatology 23:145–154

    Article  CAS  PubMed  Google Scholar 

  15. Seitz HK, Mueller S (2010) Alcoholic liver disease. In: Dancygier H (ed) Clinical hepatology. Principle and practice of hepatobiliary diseases, vol 2. Springer, Heidelberg, pp 1111–1151

    Google Scholar 

  16. El-Serag HB (2004) Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127:S27–S34

    Article  PubMed  Google Scholar 

  17. El-Serag HB, Rudolph KL (2011) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  CAS  Google Scholar 

  18. WHO. Mortality database. http://www.who.int/whosis/en

  19. Rehm J, Samokhvalov AV, Shield KD (2013) Global burden of alcoholic liver disease. J Hepatol 59:160–168

    Article  PubMed  Google Scholar 

  20. Morgan TR, Mandayam S, Jamal MM (2004) Alcohol and hepatocellular cancer. Gastroenterology 127:S87–S97

    Article  CAS  PubMed  Google Scholar 

  21. Hassan MM, Hwang LY, Hatten CJ et al (2002) Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology 36:1206–1213

    Article  CAS  PubMed  Google Scholar 

  22. Tagger A, Donato F, Ribero ML et al (1999) Case control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Int J Cancer 81:695–699

    Article  CAS  PubMed  Google Scholar 

  23. DeBac C, Stroffolini T, Gaeta GB et al (1994) Pathogenetic factors in cirrhosis with and without hepatocellular carcinoma: a multicentre Italian study. Hepatology 20:1225–1230

    Article  CAS  Google Scholar 

  24. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5 Suppl 1):S35–S50

    Article  PubMed  Google Scholar 

  25. Nzeako UC, Goodman ZD, Ishak KG (1996) Hepatocellular carcinoma in cirrhotic and noncirrhotic livers. A clinico-histopathologic study of 804 North American patients. Am J Clin Pathol 105:65–75

    CAS  PubMed  Google Scholar 

  26. Chiesa R, Donato F, Tagger A et al (2000) Etiology of hepatocellular carcinoma in Italian patients with and without cirrhosis. Cancer Epidemiol Biomarkers Prev 9:213–216

    CAS  PubMed  Google Scholar 

  27. Ohnishi K, Iida S, Iwama S et al (1982) The effect of chronic habitual alcohol intake on the development of liver cirrhosis and hepatocellular carcinoma: relation to hepatitis B surface antigen carriage. Cancer 49:672–677

    Article  CAS  PubMed  Google Scholar 

  28. Mueller S, Millonig G, Seitz HK (2009) Alcoholic liver disease and hepatitis C: a frequently underestimated combination. World J Gastroenterol 15:3462–3471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kowdley KV (2004) Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127:S79–S86

    Article  CAS  PubMed  Google Scholar 

  30. Ascha MS, Hanouneh IA, Lopez R et al (2010) The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51:1972–1978

    Article  PubMed  Google Scholar 

  31. ElSerag HB, Tran T, Everhart JE (2004) Diabetes increases the risk of chronic liver disease and hepatocellular cancer. Gastroenterology 126:460–468

    Article  Google Scholar 

  32. Liangpusakul S, Chalasani N (2012) What should we recommend to our patients with NAFLD regarding alcohol use? Am J Gastroenterol 107:976–978

    Article  Google Scholar 

  33. Donato F, Tagger A, Gelatti U et al (2002) Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol 155:323–331

    Article  CAS  PubMed  Google Scholar 

  34. Seitz HK, Stickel F (2013) Ethanol and hepatocarcinogenesis. In: Watson RR, Preedy VR, Zibadi S (eds) Alcohol, nutrition, and health consequences. Springer, New York, pp 411–427

    Chapter  Google Scholar 

  35. Seitz HK, Wang XD (2013) The role of cytochrome P-4502E1 in ethanol-mediated carcinogenesis. In: Dey A (ed) Cytochrome P4502E1: its role in disease and drug metabolism, vol 67, Subcellular biochemistry. Springer, New York, pp 131–144

    Chapter  Google Scholar 

  36. Seitz HK, Mueller S (2011) Ethanol metabolism and its consequences. In: Anzenbacher P, Zanger U (eds) Metabolism of drugs and xenobiotics. Wiley, Weinheim

    Google Scholar 

  37. Seitz HK, Stickel F (2006) Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 387:349–360

    Article  CAS  PubMed  Google Scholar 

  38. Seitz HK, Stickel F (2009) Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5:121–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Mueller S, Millonig G, Seitz HK, Waite GN (2012) Chemiluminescence detection of hydrogen peroxide. In: Pantopoulos K, Schipper H (eds) Principles of free radical biomedicine. Nova Publishers, New York, pp 283–302

    Google Scholar 

  40. Albano E (2002) Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radic Biol Med 32:110–114

    Article  CAS  PubMed  Google Scholar 

  41. Bailey SM, Cunningham CC (2002) Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic Biol Med 32:11–16

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC (2000) Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 14:847–858

    CAS  PubMed  Google Scholar 

  43. Bautista AP (2002) Neutrophilic infiltration in alcoholic hepatitis. Alcohol 27:17–21

    Article  CAS  PubMed  Google Scholar 

  44. Chamulitrat W, Spitzer JJ (1996) Nitric oxide and liver injury in alcohol-fed rats after lipopolysaccharide administration. Alcohol Clin Exp Res 20:1065–1070

    Article  CAS  PubMed  Google Scholar 

  45. Obe G, Jonas R, Schmidt S (1986) Metabolism of ethanol in vitro produces a compound which induces sister-chromatid exchanges in human peripheral lymphocytes in vitro: acetaldehyde not ethanol is mutagenic. Mutat Res 174:47–51

    Article  CAS  PubMed  Google Scholar 

  46. Helander A, Lindahl-Kiessling K (1991) Increased frequency of acetaldehyde-induced sister-chromatid exchanges in human lymphocytes treated with an aldehyde dehydrogenase inhibitor. Mutat Res 264:103–107

    Article  CAS  PubMed  Google Scholar 

  47. Maffei F, Fimognari C, Castelli E et al (2000) Increased cytogenetic damage detected by FISH analysis on micronuclei in peripheral lymphocytes from alcoholics. Mutagenesis 15:517–523

    Article  CAS  PubMed  Google Scholar 

  48. Matsuda T, Kawanishi M, Yagi T et al (1998) Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res 26:1769–1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Theruvathu JA, Jaruga P, Nath RG et al (2005) Polyamines stimulate the formation of mutagenic 1, N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Res 33:3513–3520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Fang JL, Vaca CE (1995) Development of a 32P-postlabelling method for the analysis of adducts arising through the reaction of acetaldehyde with 2′-deoxyguanosine-3′-monophosphate and DNA. Carcinogenesis 16:2177–2185

    Article  CAS  PubMed  Google Scholar 

  51. Fang JL, Vaca CE (1997) Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis 18:627–632

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda T, Matsumoto A, Uchida M et al (2007) Increased formation of hepatic N2-ethylidene-2'-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis 28:2363–2366

    Article  CAS  PubMed  Google Scholar 

  53. Wang M, Yu N, Chen L et al (2006) Identification of an acetaldehyde adduct in human liver DNA and quantitation as N2-ethyldeoxyguanosine. Chem Res Toxicol 19:319–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wang M, McIntee EJ, Cheng G et al (2000) Identification of DNA adducts of acetaldehyde. Chem Res Toxicol 13:1149–1157

    Article  CAS  PubMed  Google Scholar 

  55. Stein S, Lao Y, Yang IY et al (2006) Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1, N2-propanodeoxyguanosine DNA adducts in human cells. Mutat Res 608:1–7

    Article  CAS  PubMed  Google Scholar 

  56. Garro AJ, Espina N, Farinati F, Salvagnini M (1986) The effects of chronic ethanol consumption on carcinogen metabolism and on O6-methylguanine transferase-mediated repair of alkylated DNA. Alcohol Clin Exp Res 10:73S–77S

    Article  CAS  PubMed  Google Scholar 

  57. French SW (2013) Epigenetic events in liver cancer resulting from alcoholic liver disease. Alcohol Res 35:57–68

    PubMed Central  PubMed  Google Scholar 

  58. Stickel F, Herold C, Seitz HK, Schuppan D (2006) Alcohol and methyl transfer: implication for alcohol related hepatocarcinogenesis. In: Ali S, Friedman SL, Mann DA (eds) Liver disease: biochemical mechanisms and new therapeutic insights. Science Publisher, Enfield, pp 45–58

    Google Scholar 

  59. Seitz HK, Becker P (2007) Alcohol metabolism and cancer risk. Alcohol Res Health 30:38–47

    PubMed Central  PubMed  Google Scholar 

  60. Seitz HK (2012) Alcohol and breast cancer. Breast 21:426–427

    Article  PubMed  Google Scholar 

  61. Homann N, Stickel F, Konig IR et al (2006) Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers. Int J Cancer 118:1998–2002

    Article  CAS  PubMed  Google Scholar 

  62. Yokoyama A, Muramatsu T, Ohmori T et al (1998) Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 19:1383–1387

    Article  CAS  PubMed  Google Scholar 

  63. Matsuda T, Yabushita H, Kanaly RA et al (2006) Increased DNA damage in ALDH2-deficient alcoholics. Chem Res Toxicol 19:1374–1378

    Article  CAS  PubMed  Google Scholar 

  64. French SM (2013) The importance of CYP2E1 in the pathogenesis of alcoholic liver disease and drug toxicity and the role of the proteasome. In: Dey A (ed) Cytochrome P4502E1: its role in disease and drug metabolism. Springer, New York, pp 131–144

    Google Scholar 

  65. Oneta CM, Lieber CS, Li J et al (2002) Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36:47–52

    Article  CAS  PubMed  Google Scholar 

  66. Gouillon Z, Lucas D, Li J et al (2000) Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc Soc Exp Biol Med 224:302–308

    Article  CAS  PubMed  Google Scholar 

  67. Bradford BU, Kono H, Isayama F et al (2005) Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology 41:336–344

    Article  CAS  PubMed  Google Scholar 

  68. Morgan K, French SW, Morgan TR (2002) Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36:122–134

    Article  CAS  PubMed  Google Scholar 

  69. Wang XD, Seitz HK (2004) Alcohol and retinoid interaction. In: Watson RR, Preedy VR (eds) Nutrition and alcohol: linking nutrient interactions and dietary intake. CRC, Boca Raton, pp 313–321

    Google Scholar 

  70. El Ghissassi F, Barbin A, Bartsch H (1998) Metabolic activation of vinyl chloride by rat liver microsomes: low-dose kinetics and involvement of cytochrome P450 2E1. Biochem Pharmacol 55:1445–1452

    Article  PubMed  Google Scholar 

  71. Pandya GA, Moriya M (1996) 1, N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 35:11487–11492

    Article  CAS  PubMed  Google Scholar 

  72. Levine RL, Yang IY, Hossain M et al (2000) Mutagenesis induced by a single 1, N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 60:4098–4104

    CAS  PubMed  Google Scholar 

  73. Frank A, Seitz HK, Bartsch H et al (2004) Immunohistochemical detection of 1, N6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to hepato-carcinogenesis. Carcinogenesis 25:1027–1031

    Article  CAS  PubMed  Google Scholar 

  74. Nair J, Srivatanakul P, Haas C et al (2010) High urinary excretion of lipid peroxidation-derived DNA damage in patients with cancer-prone liver diseases. Mutat Res 683:23–28

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Millonig G, Nair J et al (2009) Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 50:453–461

    Article  CAS  PubMed  Google Scholar 

  76. Lieber CS (2004) CYP2E1: from ASH to NASH. Hepatol Res 28:1–11

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Seitz H, Wang X (2010) Moderate alcohol consumption aggravates high-fat diet induced steatohepatitis in rats. Alcohol Clin Exp Res 34:567–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Leo MA, Lieber CS (1982) Hepatic vitamin A depletion in alcoholic liver injury. N Engl J Med 307:597–601

    Article  CAS  PubMed  Google Scholar 

  79. Wang XD, Liu C, Chung J et al (1998) Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-Jun and c-Fos) expression in rat liver. Hepatology 28:744–750

    Article  CAS  PubMed  Google Scholar 

  80. Liu C, Russell RM, Seitz HK, Wang XD (2001) Ethanol enhances retinoic acid metabolism into polar metabolites in rat liver via induction of cytochrome P4502E1. Gastroenterology 120:179–189

    Article  CAS  PubMed  Google Scholar 

  81. Dan Z, Popov Y, Patsenker E et al (2005) Hepatotoxicity of alcohol-induced polar retinol metabolites involves apoptosis via loss of mitochondrial membrane potential. FASEB J 19:845–847

    CAS  PubMed  Google Scholar 

  82. Liu C, Chung J, Seitz HK et al (2002) Chlormethiazole treatment prevents reduced hepatic vitamin A levels in ethanol-fed rats. Alcohol Clin Exp Res 26:1703–1709

    Article  CAS  PubMed  Google Scholar 

  83. Chung J, Liu C, Smith DE et al (2001) Restoration of retinoic acid concentration suppresses ethanol-enhanced c-Jun expression and hepatocyte proliferation in rat liver. Carcinogenesis 22:1213–1219

    Article  CAS  PubMed  Google Scholar 

  84. Leo MA, Kim C, Lowe N, Lieber CS (1992) Interaction of ethanol with beta-carotene: delayed blood clearance and enhanced hepatotoxicity. Hepatology 15:883–891

    Article  CAS  PubMed  Google Scholar 

  85. Fenton HJ (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  86. Saran M, Michel C, Stettmaier K, Bors W (2000) Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radic Res 33:567–579

    Article  CAS  PubMed  Google Scholar 

  87. Niederau C, Fischer R, Purschel A et al (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110:1107–1119

    Article  CAS  PubMed  Google Scholar 

  88. Ko C, Siddaiah N, Berger J et al (2007) Prevalence of hepatic iron overload and association with hepatocellular cancer in end-stage liver disease: results from the National Hemochromatosis Transplant Registry. Liver Int 27:1394–1401

    Article  PubMed  Google Scholar 

  89. Turlin B, Juguet F, Moirand R et al (1995) Increased liver iron stores in patients with hepatocellular carcinoma developed on a noncirrhotic liver. Hepatology 22:446–450

    CAS  PubMed  Google Scholar 

  90. Zacharski LR, Chow BK, Howes PS et al (2008) Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J Natl Cancer Inst 100:996–1002

    Article  CAS  PubMed  Google Scholar 

  91. Hann HW, Stahlhut MW, Blumberg BS (1988) Iron nutrition and tumor growth: decreased tumor growth in iron-deficient mice. Cancer Res 48:4168–4170

    CAS  PubMed  Google Scholar 

  92. Tsukamoto H, Horne W, Kamimura S et al (1995) Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96:620–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. D’Amico G, Garcia-Tsao G, Pagliaro L (2006) Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 44:217–231

    Article  PubMed  Google Scholar 

  94. Ganne-Carrie N, Christidis C, Chastang C et al (2000) Liver iron is predictive of death in alcoholic cirrhosis: a multivariate study of 229 consecutive patients with alcoholic and/or hepatitis C virus cirrhosis: a prospective follow up study. Gut 46:277–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Powell LW (1975) The role of alcoholism in hepatic storage disease. In: Seixas FA, Williams K, Seggleston S (eds) Medical consequences of alcoholism. New York Academy of Sciences, New York, pp 124–134

    Google Scholar 

  96. Bell ET (1955) The relation of portal cirrhosis to hemochromatosis and to diabetes mellitus. Diabetes 4:435–446

    Article  CAS  PubMed  Google Scholar 

  97. Conrad ME Jr, Berman A, Crosby WH (1962) Iron kinetics in Laennec’s cirrhosis. Gastroenterology 43:385–390

    CAS  PubMed  Google Scholar 

  98. Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  CAS  PubMed  Google Scholar 

  99. Pascoe A, Kerlin P, Steadman C et al (1999) Spur cell anaemia and hepatic iron stores in patients with alcoholic liver disease undergoing orthotopic liver transplantation. Gut 45:301–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Sohda T, Takeyama Y, Irie M et al (1999) Putative hemochromatosis gene mutations and alcoholic liver disease with iron overload in Japan. Alcohol Clin Exp Res 23:21S–23S

    Article  CAS  PubMed  Google Scholar 

  101. Dostalikova-Cimburova M, Kratka K, Stransky J et al (2012) Iron overload and HFE gene mutations in Czech patients with chronic liver diseases. Dis Markers 32:65–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Chapman RW, Morgan MY, Laulicht M et al (1982) Hepatic iron stores and markers of iron overload in alcoholics and patients with idiopathic hemochromatosis. Dig Dis Sci 27:909–916

    Article  CAS  PubMed  Google Scholar 

  103. Bell H, Skinningsrud A, Raknerud N, Try K (1994) Serum ferritin and transferrin saturation in patients with chronic alcoholic and non-alcoholic liver diseases. J Intern Med 236:315–322

    Article  CAS  PubMed  Google Scholar 

  104. Suzuki Y, Saito H, Suzuki M, Hosoki Y, Sakurai S, Fujimoto Y, Kohgo Y (2002) Up-regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease. Alcohol Clin Exp Res 26:26S–31S

    Article  CAS  PubMed  Google Scholar 

  105. Mueller S (2013) Non-invasive assessment of patients with alcoholic liver disease. Clin Liver Dis 2:68–71

    Article  Google Scholar 

  106. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  CAS  PubMed  Google Scholar 

  108. Ganz T (2007) Molecular control of iron transport. J Am Soc Nephrol 18:394–400

    Article  CAS  PubMed  Google Scholar 

  109. Nicolas G, Bennoun M, Devaux I et al (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780–8785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Nemeth E, Ganz T (2009) The role of hepcidin in iron metabolism. Acta Haematol 122:78–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of Mammalian iron metabolism. Cell 142:24–38

    Article  CAS  PubMed  Google Scholar 

  112. Sow FB, Florence WC, Satoskar AR et al (2007) Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 82:934–945

    Article  CAS  PubMed  Google Scholar 

  113. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1011–1023

    Article  CAS  PubMed  Google Scholar 

  114. Millonig G, Ganzleben I, Peccerella T et al (2012) Sustained submicromolar H2O2 levels induce hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem 287:37472–37482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Miura K, Taura K, Kodama Y, Schnabl B, Brenner DA (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429

    Article  CAS  PubMed  Google Scholar 

  116. Richardson DR, Lane DJ, Becker EM et al (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107:10775–10782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  118. Recalcati S, Minotti G, Cairo G (2010) Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal 13:1593–1616

    Article  CAS  PubMed  Google Scholar 

  119. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Fillebeen C, Pantopoulos K (2002) Redox control of iron regulatory proteins. Redox Rep 7:15–22

    Article  CAS  PubMed  Google Scholar 

  121. Mueller S (2005) Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors 24:171–181

    Article  CAS  PubMed  Google Scholar 

  122. Mutze S, Hebling U, Stremmel W et al (2003) Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1. J Biol Chem 278:40542–40549

    Article  PubMed  CAS  Google Scholar 

  123. Watts RN, Hawkins C, Ponka P, Richardson DR (2006) Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc Natl Acad Sci U S A 103:7670–7675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Ohtake T, Saito H, Hosoki Y et al (2007) Hepcidin is down-regulated in alcohol loading. Alcohol Clin Exp Res 31:S2–S8

    Article  PubMed  Google Scholar 

  125. Harrison-Findik DD, Schafer D, Klein E et al (2006) Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem 281:22974–22982

    Article  CAS  PubMed  Google Scholar 

  126. Harrison-Findik DD, Klein E, Crist C et al (2007) Iron-mediated regulation of liver hepcidin expression in rats and mice is abolished by alcohol. Hepatology 46:1979–1985

    Article  CAS  PubMed  Google Scholar 

  127. Harrison-Findik DD, Klein E, Evans J, Gollan J (2009) Regulation of liver hepcidin expression by alcohol in vivo does not involve Kupffer cell activation or TNF-alpha signaling. Am J Physiol Gastrointest Liver Physiol 296:G112–G118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Shindo M, Torimoto Y, Saito H et al (2006) Functional role of DMT1 in transferrin-independent iron uptake by human hepatocyte and hepatocellular carcinoma cell, HLF. Hepatol Res 35:152–162

    CAS  PubMed  Google Scholar 

  129. Suzuki M, Fujimoto Y, Suzuki Y et al (2004) Induction of transferrin receptor by ethanol in rat primary hepatocyte culture. Alcohol Clin Exp Res 28:98S–105S

    Article  CAS  PubMed  Google Scholar 

  130. Andriopoulos B, Hegedusch S, Mangin J et al (2007) Sustained hydrogen peroxide induces iron uptake by transferrin receptor-1 independent of the iron regulatory protein/iron-responsive element network. J Biol Chem 282:20301–20308

    Article  CAS  PubMed  Google Scholar 

  131. Nishina S, Hino K, Korenaga M et al (2008) Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134:226–238

    Article  CAS  PubMed  Google Scholar 

  132. Mueller S, Rausch V (2015) The role of iron in alcohol-mediated hepatocarcinogenesis. Adv Exp Med Biol 815:89–112

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut K. Seitz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seitz, H.K., Mueller, S. (2015). The Role of Oxidative Stress in Hepatocarcinogenesis. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_21

Download citation

Publish with us

Policies and ethics