Skip to main content

Oxidative Stress in the Central Nervous System Complications of Chronic Liver Failure

  • Chapter

Abstract

Hepatic encephalopathy is a serious and debilitating neuropsychiatric complication of liver failure. Observed in approximately 80 % of patients with chronic liver failure, hepatic encephalopathy is characterized by cognitive, psychiatric, and motor disturbances. Characteristic symptoms of hepatic encephalopathy include personality changes, sleep abnormalities, asterixis, and muscle rigidity progressing through stupor to coma. The pathophysiologic basis of hepatic encephalopathy remains unclear. Nevertheless, there is general agreement that ammonia plays a key role. Over the years, it has been suggested that oxidative stress constitutes part of the pathophysiologic cascade in hepatic encephalopathy. Direct evidence for oxidative stress in the pathogenesis of hepatic encephalopathy has been demonstrated in experimental animal models of chronic liver failure as well as in in vitro experiments. However, evidence from studies in patients suffering from chronic liver failure-induced hepatic encephalopathy is limited. This chapter will highlight the evidence, from in vitro, in vivo, and human studies, implicating oxidative stress in the pathogenesis of hepatic encephalopathy. This chapter will also summarize potential antioxidant strategies in the treatment of hepatic encephalopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zatoński WA, Sulkowska U, Mańczuk M, Rehm J, Boffetta P, Lowenfels AB et al (2010) Liver cirrhosis mortality in Europe, with special attention to Central and Eastern Europe. Eur Addict Res 16:193–201

    PubMed  Google Scholar 

  2. FASTSTATS—chronic liver disease or cirrhosis [Internet]. [cited 2014 May 28]. Available from http://www.cdc.gov/nchs/fastats/liver-disease.htm

  3. Canadian Liver Foundation (2013) Liver disease in Canada—a crisis in the making. Canadian Liver Foundation

    Google Scholar 

  4. Selberg O, Böttcher J, Tusch G, Pichlmayr R, Henkel E, Müller MJ (1997) Identification of high- and low-risk patients before liver transplantation: a prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology 25:652–657

    CAS  PubMed  Google Scholar 

  5. Hartmann IJ, Groeneweg M, Quero JC, Beijeman SJ, de Man RA, Hop WC et al (2000) The prognostic significance of subclinical hepatic encephalopathy. Am J Gastroenterol 95:2029–2034

    CAS  PubMed  Google Scholar 

  6. Bismuth M, Funakoshi N, Cadranel J-F, Blanc P (2011) Hepatic encephalopathy: from pathophysiology to therapeutic management. Eur J Gastroenterol Hepatol 23:8–22

    PubMed  Google Scholar 

  7. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35:716–721

    PubMed  Google Scholar 

  8. Mullen KD, Prakash RK (2012) Hepatic encephalopathy. Humana Press, Totowa

    Google Scholar 

  9. Stewart CA, Smith GE (2007) Minimal hepatic encephalopathy. Nat Clin Pract Gastroenterol Hepatol 4:677–685

    PubMed  Google Scholar 

  10. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    CAS  PubMed  Google Scholar 

  11. Mousseau DD, Butterworth RF (1994) Current theories on the pathogenesis of hepatic encephalopathy. Proc Soc Exp Biol Med 206:329–344

    CAS  PubMed  Google Scholar 

  12. Norenberg MD, Huo Z, Neary JT, Roig-Cantesano A (1997) The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia 21:124–133

    CAS  PubMed  Google Scholar 

  13. Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153

    CAS  PubMed  Google Scholar 

  14. Desjardins P, Butterworth RF (2002) The “peripheral-type” benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem Int 41:109–114

    CAS  PubMed  Google Scholar 

  15. Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF (2006) Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem Int 49:372–378

    CAS  PubMed  Google Scholar 

  16. Hermenegildo C, Marcaida G, Montoliu C, Grisolía S, Miñana MD, Felipo V (1996) NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem Res 21:1237–1244

    CAS  PubMed  Google Scholar 

  17. Marcaida G, Felipo V, Hermenegildo C, Miñana MD, Grisolía S (1992) Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett 296:67–68

    CAS  PubMed  Google Scholar 

  18. Hawkins RA, Jessy J, Mans AM, De Joseph MR (1993) Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 60:1000–1006

    CAS  PubMed  Google Scholar 

  19. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–H829

    CAS  PubMed  Google Scholar 

  20. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F et al (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    CAS  PubMed  Google Scholar 

  21. Kundra A, Jain A, Banga A, Bajaj G, Kar P (2005) Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin Biochem 38:696–699

    CAS  PubMed  Google Scholar 

  22. Rao VLR (2002) Nitric oxide in hepatic encephalopathy and hyperammonemia. Neurochem Int 41:161–170

    CAS  PubMed  Google Scholar 

  23. Medina J, Moreno-Otero R (2005) Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 65:2445–2461

    CAS  PubMed  Google Scholar 

  24. Albano E (2006) Alcohol, oxidative stress and free radical damage. Proc Nutr Soc 65:278–290

    CAS  PubMed  Google Scholar 

  25. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  26. Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF (2011) AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology 53:1995–2002

    CAS  PubMed  Google Scholar 

  27. Wright G, Soper R, Brooks HF, Stadlbauer V, Vairappan B, Davies NA et al (2010) Role of aquaporin-4 in the development of brain oedema in liver failure. J Hepatol 53:91–97

    CAS  PubMed  Google Scholar 

  28. Davies NA, Wright G, Ytrebø LM, Stadlbauer V, Fuskevåg O-M, Zwingmann C et al (2009) L-ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. Hepatology 50:155–164

    CAS  PubMed  Google Scholar 

  29. Häussinger D, Görg B (2010) Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr Opin Clin Nutr Metab Care 13:87–92

    PubMed  Google Scholar 

  30. Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D, Zilles K (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. Neuroimage 41:706–717

    CAS  PubMed  Google Scholar 

  31. Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O et al (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55:758–771

    PubMed  Google Scholar 

  32. Häussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165

    PubMed  Google Scholar 

  33. Kruczek C, Görg B, Keitel V, Pirev E, Kröncke KD, Schliess F et al (2009) Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 57:79–92

    PubMed  Google Scholar 

  34. Schliess F, Görg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A et al (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741

    CAS  PubMed  Google Scholar 

  35. Görg B, Qvartskhava N, Bidmon H-J, Palomero-Gallagher N, Kircheis G, Zilles K et al (2010) Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 52:256–265

    PubMed Central  PubMed  Google Scholar 

  36. Brunk UT (1989) On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv Exp Med Biol 266:313–320; discussion 321–322

    CAS  PubMed  Google Scholar 

  37. Gregorios JB, Mozes LW, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J Neuropathol Exp Neurol 44:404–414

    CAS  PubMed  Google Scholar 

  38. Gregorios JB, Mozes LW, Norenberg LO, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J Neuropathol Exp Neurol 44:397–403

    CAS  PubMed  Google Scholar 

  39. O’Connor JE, Costell M (1990) New roles of carnitine metabolism in ammonia cytotoxicity. Adv Exp Med Biol 272:183–195

    PubMed  Google Scholar 

  40. Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33

    CAS  PubMed  Google Scholar 

  41. Schliess F, Görg B, Häussinger D (2006) Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 387:1363–1370

    CAS  PubMed  Google Scholar 

  42. Norenberg MD, Rao KVR, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318

    CAS  PubMed  Google Scholar 

  43. Schliess F, Foster N, Görg B, Reinehr R, Häussinger D (2004) Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes. Glia 47:21–29

    PubMed  Google Scholar 

  44. Warskulat U, Görg B, Bidmon H-J, Müller HW, Schliess F, Häussinger D (2002) Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40:324–336

    PubMed  Google Scholar 

  45. Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PVB, Norenberg MD (2008) NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem 106:2302–2311

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Konopacka A, Zielińska M, Albrecht J (2008) Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line. Neurochem Int 52:1160–1166

    CAS  PubMed  Google Scholar 

  47. Woodard GE, Rosado JA (2008) Natriuretic peptides in vascular physiology and pathology. Int Rev Cell Mol Biol 268:59–93

    CAS  PubMed  Google Scholar 

  48. De Vito P, Incerpi S, Pedersen JZ, Luly P (2010) Atrial natriuretic peptide and oxidative stress. Peptides 31:1412–1419

    PubMed  Google Scholar 

  49. Skowrońska M, Zielińska M, Albrecht J (2010) Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 115:1068–1076

    PubMed  Google Scholar 

  50. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  51. Bai M, Qi X, Yang Z, Yin Z, Nie Y, Yuan S et al (2011) Predictors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in cirrhotic patients: a systematic review. J Gastroenterol Hepatol 26:943–951

    PubMed  Google Scholar 

  52. Rao KV, Panickar KS, Jayakumar AR, Norenberg MD (2005) Astrocytes protect neurons from ammonia toxicity. Neurochem Res 30:1311–1318

    CAS  PubMed  Google Scholar 

  53. Bai G, Rao KVR, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66:981–991

    CAS  PubMed  Google Scholar 

  54. Rao VL, Audet RM, Butterworth RF (1995) Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: results of an in vivo microdialysis study. J Neurochem 65:1221–1228

    CAS  PubMed  Google Scholar 

  55. Suárez I, Bodega G, Rubio M, Fernández B (2005) Down-regulation of astroglial proteins in the rat cerebellum after portacaval anastomosis. Neuropathol Appl Neurobiol 31:163–169

    PubMed  Google Scholar 

  56. Suárez I, Bodega G, Arilla E, Felipo V, Fernández B (2006) The expression of nNOS, iNOS and nitrotyrosine is increased in the rat cerebral cortex in experimental hepatic encephalopathy. Neuropathol Appl Neurobiol 32:594–604

    PubMed  Google Scholar 

  57. Hernández R, Martínez-Lara E, Moral MLD, Blanco S, Cañuelo A, Siles E et al (2004) Upregulation of endothelial nitric oxide synthase maintains nitric oxide production in the cerebellum of thioacetamide cirrhotic rats. Neuroscience 126:879–887

    PubMed  Google Scholar 

  58. Master S, Gottstein J, Blei AT (1999) Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880

    CAS  PubMed  Google Scholar 

  59. Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VLR (2002) GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 68:730–737

    CAS  PubMed  Google Scholar 

  60. Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M et al (2012) Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 52:1228–1235

    CAS  PubMed  Google Scholar 

  61. Dhanda S, Kaur S, Sandhir R (2013) Preventive effect of N-acetyl-L-cysteine on oxidative stress and cognitive impairment in hepatic encephalopathy following bile duct ligation. Free Radic Biol Med 56:204–215

    CAS  PubMed  Google Scholar 

  62. Negru T, Ghiea V, Păsărică D (1999) Oxidative injury and other metabolic disorders in hepatic encephalopathy. Rom J Physiol 36:29–36

    CAS  PubMed  Google Scholar 

  63. Ribeiro L, Andreazza AC, Salvador M, da Silveira TR, Vieira S, Nora DB et al (2007) Oxidative stress and S100B protein in cirrhotic children. Neurochem Res 32:1600–1603

    CAS  PubMed  Google Scholar 

  64. Jalan R, Olde Damink SWM, Ter Steege JC, Redhead DN, Lee A, Hayes PC et al (2011) Acute endotoxemia following transjugular intrahepatic stent-shunt insertion is associated with systemic and cerebral vasodilatation with increased whole body nitric oxide production in critically ill cirrhotic patients. J Hepatol 54:265–271

    CAS  PubMed  Google Scholar 

  65. Görg B, Bidmon H-J, Häussinger D (2013) Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 57:2436–2447

    PubMed  Google Scholar 

  66. Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    CAS  PubMed  Google Scholar 

  67. Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase versus p53: the mitochondrial center. Ann N Y Acad Sci 1201:72–78

    CAS  PubMed  Google Scholar 

  68. Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    CAS  PubMed  Google Scholar 

  69. Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    CAS  PubMed  Google Scholar 

  70. Sun AY, Yang WL, Kim HD (1993) Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Ann N Y Acad Sci 679:358–363

    CAS  PubMed  Google Scholar 

  71. Desole MS, Esposito G, Migheli R, Fresu L, Sircana S, Zangani D et al (1995) Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology 34:289–295

    CAS  PubMed  Google Scholar 

  72. Chen C-J, Liao S-L (2002) Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol 175:216–225

    CAS  PubMed  Google Scholar 

  73. Butterworth RF (2010) Metal toxicity, liver disease and neurodegeneration. Neurotox Res 18:100–105

    PubMed  Google Scholar 

  74. Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20:173–180

    CAS  PubMed  Google Scholar 

  75. Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58:730–735

    CAS  PubMed  Google Scholar 

  76. Erikson KM, Dorman DC, Lash LH, Aschner M (2005) Persistent alterations in biomarkers of oxidative stress resulting from combined in utero and neonatal manganese inhalation. Biol Trace Elem Res 104:151–163

    CAS  PubMed  Google Scholar 

  77. Jayakumar AR, Rao KVR, Kalaiselvi P, Norenberg MD (2004) Combined effects of ammonia and manganese on astrocytes in culture. Neurochem Res 29:2051–2056

    CAS  PubMed  Google Scholar 

  78. Zhang F, Xu Z, Gao J, Xu B, Deng Y (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 26:232–236

    CAS  PubMed  Google Scholar 

  79. Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J 266:329–334

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Heron P, Cousins K, Boyd C, Daya S (2001) Paradoxical effects of copper and manganese on brain mitochondrial function. Life Sci 68:1575–1583

    CAS  PubMed  Google Scholar 

  81. Rao KVR, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338

    CAS  PubMed  Google Scholar 

  82. Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ et al (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46:492–498

    CAS  PubMed  Google Scholar 

  83. Hazell AS, Norenberg MD (1998) Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem Res 23:869–873

    CAS  PubMed  Google Scholar 

  84. Moreno JA, Sullivan KA, Carbone DL, Hanneman WH, Tjalkens RB (2008) Manganese potentiates nuclear factor-kappaB-dependent expression of nitric oxide synthase 2 in astrocytes by activating soluble guanylate cyclase and extracellular responsive kinase signaling pathways. J Neurosci Res 86:2028–2038

    CAS  PubMed  Google Scholar 

  85. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    CAS  PubMed  Google Scholar 

  86. Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 22:1443–1447

    CAS  PubMed  Google Scholar 

  87. Milatovic D, Gupta RC, Yu Y, Zaja-Milatovic S, Aschner M (2011) Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 256:219–226

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B (2014) Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics 6:921–931

    CAS  PubMed  Google Scholar 

  89. Inoue E, Hori S, Narumi Y, Fujita M, Kuriyama K, Kadota T et al (1991) Portal-systemic encephalopathy: presence of basal ganglia lesions with high signal intensity on MR images. Radiology 179:551–555

    CAS  PubMed  Google Scholar 

  90. Layrargues GP, Shapcott D, Spahr L, Butterworth RF (1995) Accumulation of manganese and copper in pallidum of cirrhotic patients: role in the pathogenesis of hepatic encephalopathy? Metab Brain Dis 10:353–356

    CAS  PubMed  Google Scholar 

  91. Krieger D, Krieger S, Jansen O, Gass P, Theilmann L, Lichtnecker H (1995) Manganese and chronic hepatic encephalopathy. Lancet 346:270–274

    CAS  PubMed  Google Scholar 

  92. Tarter RE, Hegedus AM, Van Thiel DH, Schade RR, Gavaler JS, Starzl TE (1984) Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology 86:1421–1427

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Bruck R, Aeed H, Shirin H, Matas Z, Zaidel L, Avni Y et al (1999) The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J Hepatol 31:27–38

    CAS  PubMed  Google Scholar 

  94. Guerrini VH (1994) Effect of antioxidants on ammonia induced CNS-renal pathobiology in sheep. Free Radic Res 21:35–43

    CAS  PubMed  Google Scholar 

  95. Túnez I, Muñoz MC, Medina FJ, Salcedo M, Feijóo M, Montilla P (2007) Comparison of melatonin, vitamin E and L-carnitine in the treatment of neuro- and hepatotoxicity induced by thioacetamide. Cell Biochem Funct 25:119–127

    PubMed  Google Scholar 

  96. Roselló DM, Balestrasse K, Coll C, Coll S, Tallis S, Gurni A et al (2008) Oxidative stress and hippocampus in a low-grade hepatic encephalopathy model: protective effects of curcumin. Hepatol Res 38:1148–1153

    PubMed  Google Scholar 

  97. Subash S, Subramanian P (2009) Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol Cell Biochem 327:153–161

    CAS  PubMed  Google Scholar 

  98. Petronilho F, Périco SR, Vuolo F, Mina F, Constantino L, Comim CM et al (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26:904–910

    CAS  PubMed  Google Scholar 

  99. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116:401–416

    CAS  PubMed  Google Scholar 

  100. Paniz LG, Calcagnotto ME, Pandolfo P, Machado DG, Santos GF, Hansel G et al (2014) Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 29(3):645–654

    CAS  PubMed  Google Scholar 

  101. Bémeur C, Vaquero J, Desjardins P, Butterworth RF (2010) N-acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms. Metab Brain Dis 25:241–249

    PubMed  Google Scholar 

  102. Harrison PM, Wendon JA, Gimson AE, Alexander GJ, Williams R (1991) Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med 324:1852–1857

    CAS  PubMed  Google Scholar 

  103. Jones AL (1998) Mechanism of action and value of N-acetylcysteine in the treatment of early and late acetaminophen poisoning: a critical review. J Toxicol Clin Toxicol 36:277–285

    CAS  PubMed  Google Scholar 

  104. Walsh TS, Hopton P, Philips BJ, Mackenzie SJ, Lee A (1998) The effect of N-acetylcysteine on oxygen transport and uptake in patients with fulminant hepatic failure. Hepatology 27:1332–1340

    CAS  PubMed  Google Scholar 

  105. Wendon JA, Harrison PM, Keays R, Williams R (1994) Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 19:1407–1413

    CAS  PubMed  Google Scholar 

  106. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Bemeur Dt.P., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bemeur, C. (2015). Oxidative Stress in the Central Nervous System Complications of Chronic Liver Failure. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_16

Download citation

Publish with us

Policies and ethics