Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

This chapter provides an overview of the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) and there is only limited information available for other members of this family of chemicals. In this chapter, there are separate overviews of the developmental toxicity of PFOS and PFOA, along with a summary of studies available for perfluorobutyrate (PFBA), perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA). In general, among the PFAAs that do produce developmental toxicity in one or more laboratory species, prenatal PFAA exposure in teratology studies typically does not result in major malformations and significant findings are often limited to the higher exposure levels. The postnatal effects in rats or mice exposed to PFAAs are typically increased mortality in the first hours or week after birth, effects on weight which may persist beyond weaning, delayed eye opening, abnormal mammary gland development, and liver hypertrophy. The role of peroxisome proliferator activated receptor-alpha (PPARα) in mediating developmental effects is discussed, including insights from genetically modified mice, PPARα knockout mice, and mice expressing the human PPARα gene. Pharmacokinetic issues are relevant to selecting an appropriate animal model for developmental studies and regarding the influence of rapid clearance on manifestation of developmental toxicity. Whether or not a particular PFAA will cause developmental toxicity depends on levels and timing of fetal exposure and is influenced by species and gender specific pharmacokinetic characteristics that impact exposure of the conceptus throughout gestation and during the lactational period. Factors influencing the pharmacokinetics and developmental outcomes include chemical characteristics of a particular PFAA (carbon chain length, functional moiety – carboxylate or sulfonate), species specific characteristics (sex and species specific expression of particular transporters in the kidney that influence clearance), timing and level of exposure to the developing fetus, and ability of the PFAA to activate PPARα (human, mouse, and rat PPARα differ in responses to PFAA, carboxylates are more effective than sulfonates, and longer carbon chain PFAA are more potent than short chain PFAA). The expression and activation of PPARα is necessary for mediating developmental effects of PFOA and PFNA, but the early postnatal deaths caused by exposure to PFOS were not dependent on expression of PPARα.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BD (2009) Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol 27:246–257

    Article  CAS  PubMed  Google Scholar 

  • Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C (2007) Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci 98:571–581

    Article  CAS  PubMed  Google Scholar 

  • Abbott BD, Wolf CJ, Das KP, Zehr RD, Schmid JE, Lindstrom AB, Strynar MJ, Lau C (2009) Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol 27:258–265

    Article  CAS  PubMed  Google Scholar 

  • Abbott BD, Wood CR, Watkins AM, Tatum-Gibbs K, Das KP, Lau C (2012) Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod Toxicol 33:491–505

    Article  CAS  PubMed  Google Scholar 

  • Albrecht PP, Torsell NE, Krishnan P, Ehresman DJ, Frame SR, Chang SC, Butenhoff JL, Kennedy GL, Gonzalez FJ, Peters JM (2013) A species difference in the peroxisome proliferator-activated receptor alpha-dependent response to the developmental effects of perfluorooctanoic acid. Toxicol Sci 131:568–582

    Article  CAS  PubMed  Google Scholar 

  • Andersen ME, Butenhoff JL, Chang S-C, Farrar DG, Kennedy GL Jr, Lau C, Olsen GW, Seed J, Wallace KB (2008) Perfluoroalkyl acids and related chemistries-toxicokinetics and modes of action. Toxicol Sci 102:3–14

    Article  CAS  PubMed  Google Scholar 

  • Borg D, Bogdanska J, Sundstrom M, Nobel S, Hakansson H, Bergman A, Depierre JW, Halldin K, Bergstrom U (2010) Tissue distribution of (35)S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod Toxicol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Buist SC, Klaassen CD (2004) Rat and mouse differences in gender-predominant expression of organic anion transporter (Oat1-3; Slc22a6-8) mRNA levels. Drug Metab Dispos 32:620–625

    Article  CAS  PubMed  Google Scholar 

  • Buist SC, Cherrington NJ, Choudhuri S, Hartley DP, Klaassen CD (2002) Gender-specific and developmental influences on the expression of rat organic anion transporters. J Pharmacol Exp Ther 301:145–151

    Article  CAS  PubMed  Google Scholar 

  • Case MT, York RG, Christian MS (2001) Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. Int J Toxicol 20:101–109

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, Li YY, Xu SQ (2012) Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol 33:538–545

    Article  CAS  PubMed  Google Scholar 

  • Chengelis CP, Kirkpatrick JB, Myers NR, Shinohara M, Stetson PL, Sved DW (2009) Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats. Reprod Toxicol 27:400–406

    Article  CAS  PubMed  Google Scholar 

  • Christian MS, Hoberman AM, York RG (1999a) Combined oral (gavage) fertility, developmental and perinatal/postnatal reproduction toxicity study of N-EtFOSE in rats. Argus Research laboratories, Horsham, US EPA Docket AR-226-0552

    Google Scholar 

  • Christian MS, Hoberman AM, York RG (1999b) Combined oral (gavage) fertility, developmental and perinatal/postnatal reproduction toxicity study of PFOS in rats. US EPA Docket 8 EHQ-0200-00374

    Google Scholar 

  • Das KP, Grey BE, Zehr RD, Wood CR, Butenhoff JL, Chang SC, Ehresman DJ, Tan YM, Lau C (2008) Effects of perfluorobutyrate exposure during pregnancy in the mouse. Toxicol Sci 105:173–181

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Grey BE, Rosen MB, Wood CR, Tatum-Gibbs KR, Zehr RD, Strynar MJ, Lindstrom AB, Lau C (2015) Developmental toxicity of perfluorononanoic acid in mice. Reprod Toxicol 51:133–144

    Article  CAS  Google Scholar 

  • Era S, Harada KH, Toyoshima M, Inoue K, Minata M, Saito N, Takigawa T, Shiota K, Koizumi A (2009) Cleft palate caused by perfluorooctane sulfonate is caused mainly by extrinsic factors. Toxicology 256:42–47

    Article  CAS  PubMed  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    Article  CAS  PubMed  Google Scholar 

  • Gannon SA, Johnson T, Nabb DL, Serex TL, Buck RC, Loveless SE (2011) Absorption, distribution, metabolism, and excretion of [1-(1)(4)C]-perfluorohexanoate ([(1)(4)C]-PFHx) in rats and mice. Toxicology 283:55–62

    Article  CAS  PubMed  Google Scholar 

  • Gordon SC, Schurch S, Amrein M, Schoel M (2007) Effects of perfluorinated acids on pulmonary surfactant properties in vitro. Toxicologist 96:91

    Google Scholar 

  • Gortner E (1982) Oral teratology study of T-3141CoC in rabbits. Experiment Number 0681TB0398. Safety Evaluation Laboratory and Riker Laboratories, St. Paul

    Google Scholar 

  • Grasty RC, Grey BE, Lau CS, Rogers JM (2003) Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res B Dev Reprod Toxicol 68:465–471

    Article  CAS  PubMed  Google Scholar 

  • Grasty RC, Bjork JA, Wallace KB, Lau CS, Rogers JM (2005) Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects Res B Dev Reprod Toxicol 74:405–416

    Article  CAS  PubMed  Google Scholar 

  • Harris MW, Birnbaum LS (1989) Developmental toxicity of perfluorodecanoic acid in C57BL/6N mice. Fundam Appl Toxicol 12:442–448

    Article  CAS  PubMed  Google Scholar 

  • Hundley SG, Sarrif AM, Kennedy GL (2006) Absorption, distribution, and excretion of ammonium perfluorooctanoate (APFO) after oral administration to various species. Drug Chem Toxicol 29:137–145

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Hoberman AM (2014) Oral (Gavage) combined developmental and perinatal/postnatal reproduction toxicity study of ammonium salt of perfluorinated hexanoic acid in mice. Int J Toxicol 33:219–237

    Google Scholar 

  • Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, Deluca JG, Lai DY, Mckee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:655–780

    Article  CAS  PubMed  Google Scholar 

  • Lau C (2012) Perfluoroalkyl acids: recent research highlights. Reprod Toxicol 33:405–409

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231–241

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 90:510–518

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  • Lau C, Das KP, Tatum K, Zehr RD, Wood CR, Rosen MB (2009) Developmental toxicity of perfluorononanoic acid in the mouse. Toxicologist 108:417

    Google Scholar 

  • Lehmler HJ, Xie W, Bothun GD, Bummer PM, Knutson BL (2006) Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). Colloids Surf B: Biointerfaces 51:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lieder PH, York RG, Hakes DC, Chang SC, Butenhoff JL (2009) A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology 259:33–45

    Article  CAS  PubMed  Google Scholar 

  • Loveless SE, Slezak B, Serex T, Lewis J, Mukerji P, O’Connor JC, Donner EM, Frame SR, Korzeniowski SH, Buck RC (2009) Toxicological evaluation of sodium perfluorohexanoate. Toxicology 264:32–44

    Article  CAS  PubMed  Google Scholar 

  • Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL (2005a) Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215:126–148

    Article  CAS  PubMed  Google Scholar 

  • Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL (2005b) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharmacokinetic parameters. Toxicology 215:149–169

    Article  CAS  PubMed  Google Scholar 

  • Macon MB, Villanueva LR, Tatum-Gibbs K, Zehr RD, Strynar MJ, Stanko JP, White SS, Helfant L, Fenton SE (2011) Prenatal perfluorooctanoic acid exposure in CD-1 mice: low dose developmental effects and internal dosimetry. Toxicol Sci 122:134–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matyszewska D, Tappura K, Oradd G, Bilewicz R (2007) Influence of perfluorinated compounds on the properties of model lipid membranes. J Phys Chem B 111:9908–9918

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C (2007) Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology 239:15–33

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C (2009) Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol 27:278–288

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Das KP, Wood CR, Wolf CJ, Abbott BD, Lau C (2013) Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes. Toxicology 308C:129–137

    Article  Google Scholar 

  • Staples RE, Burgess BA, Kerns WD (1984) The embryo-fetal toxicity and teratogenic potential of ammonium perfluorooctanoate (APFO) in the rat. Fundam Appl Toxicol 4:429–440

    Article  CAS  PubMed  Google Scholar 

  • Sundstrom M, Chang SC, Noker PE, Gorman GS, Hart JA, Ehresman DJ, Bergman A, Butenhoff JL (2012) Comparative pharmacokinetics of perfluorohexanesulfonate (PFHxS) in rats, mice, and monkeys. Reprod Toxicol 33:441–451

    Article  PubMed  Google Scholar 

  • Tatum-Gibbs K, Wambaugh JF, Das KP, Zehr RD, Strynar MJ, Lindstrom AB, Delinsky A, Lau C (2011) Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology 281:48–55

    Article  CAS  PubMed  Google Scholar 

  • Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, Butenhoff JL, Stevenson LA, Lau C (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci 74:369–381

    Article  CAS  PubMed  Google Scholar 

  • Weaver YM, Ehresman DJ, Butenhoff JL, Hagenbuch B (2010) Roles of rat renal organic anion transporters in transporting perfluorinated carboxylates with different chain lengths. Toxicol Sci 113:305–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White SS, Calafat AM, Kuklenyik Z, Villanueva L, Zehr RD, Helfant L, Strynar MJ, Lindstrom AB, Thibodeaux JR, Wood C, Fenton SE (2007) Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicol Sci 96:133–144

    Article  CAS  PubMed  Google Scholar 

  • White SS, Kato K, Jia LT, Basden BJ, Calafat AM, Hines EP, Stanko JP, Wolf CJ, Abbott BD, Fenton SE (2009) Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reprod Toxicol 27:289–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White SS, Stanko JP, Kato K, Calafat AM, Hines EP, Fenton SE (2011) Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice. Environ Health Perspect 119:1070–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf CJ, Fenton SE, Schmid JE, Calafat AM, Kuklenyik Z, Bryant XA, Thibodeaux J, Das KP, White SS, Lau CS, Abbott BD (2007) Developmental toxicity of perfluorooctanoic acid in the CD-1 mouse after cross-foster and restricted gestational exposures. Toxicol Sci 95:462–473

    Article  CAS  Google Scholar 

  • Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD (2008) Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci 106:162–171

    Article  CAS  PubMed  Google Scholar 

  • Wolf CJ, Zehr RD, Schmid JE, Lau C, Abbott BD (2010) Developmental effects of perfluorononanoic acid in the mouse are dependent on peroxisome proliferator-activated receptor-alpha. PPAR Res 2010:11pp. doi: 10.1155/2010/282896

  • Wolf CJ, Schmid JE, Lau C, Abbott BD (2012) Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARalpha) by perfluoroalkyl acids (PFAAs): further investigation of C4-C12 compounds. Reprod Toxicol 33:546–551

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Kania-Korwel I, Bummer PM, Lehmler H-J (2007a) Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. Biochim Biophys Acta Biomembr 1768:1299–1308

    Article  CAS  Google Scholar 

  • Xie W, Kania-Korwel I, Bummer PM, Lehmler HJ (2007b) Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. Biochim Biophys Acta 1768:1299–1308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S (2008) Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci 33:219–226

    Article  CAS  PubMed  Google Scholar 

  • York RG (2003) Oral (gavage) combined repeated dose toxicity study of T-7706 with the reproduction/developmental toxicity screening test. US EPA Administrative Record, AR-226-1523. 3M Sponsor Study Number T-7706.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara D. Abbott .

Editor information

Editors and Affiliations

Additional information

Disclaimer

This chapter has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abbott, B.D. (2015). Developmental Toxicity. In: DeWitt, J. (eds) Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15518-0_8

Download citation

Publish with us

Policies and ethics