Skip to main content

Data-Guided Growth and Remodeling Model of Abdominal Aortic Aneurysm Accounting for the Bio-chemical Effects of Intraluminal Thrombus

  • Conference paper
Computational Biomechanics for Medicine

Abstract

Most of the abdominal aortic aneurysms (AAA) include an intraluminal thrombus (ILT) deposited on their internal wall. Active proteolytic enzymes in the ILT may cause bio-chemically weakening the aneurysmal wall, which leads to elevation of the aneurysm rupture risk. On the other hand, lack of oxygen on the aneurysmal wall beneath a thick ILT (hypoxia) causes proteolytic activity on the wall as a secondary effect. In this paper we develop an axisymmetric growth and remodeling model of the AAA considering the bio-chemical effects of the ILT mentioned above. We then estimate the model parameters using nine patients’ longitudinal CT data. The parametric study shows that AAA’s radius and volume increases significantly in existence of ILT because of both hypoxia and proteolytic activity. However, the relation between the AAA volume and its maximum diameter slightly changes due to hypoxia while this relation highly changes because of the proteolytic activity in the luminal layer of the ILT. We also show that our numerical results for the AAA expansion as a function of its maximum diameter can be very close to the clinical data with a proper estimation of the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adolph, R., Vorp, D.A., Steed, D.L., Webster, M.W., Kameneva, M.V., Watkins, S.C.: Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25(5), 916–926 (1997)

    Article  Google Scholar 

  2. Biasetti, J., Christian G.T., Auer, M., Hedin, U., Fausto, L.: Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann. Biomed. Eng. 38(2), 380–390 (2010)

    Article  Google Scholar 

  3. Bluestein, D., Dumont, K., De Beule, M., Ricotta, J., Impellizzeri, P., Verhegghe, B., Verdonck, P.: Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm – FSI modelling. Comput. Methods Biomech. Biomed. Eng. 12(1), 73–81 (2009)

    Article  Google Scholar 

  4. Doyle, B.J., McGloughlin, T.M., Kavanagh, E.G., Hoskins, P.R.: From Detection to Rupture: A Serial Computational Fluid Dynamics Case Study of a Rapidly Expanding, Patient-Specific, Ruptured Abdominal Aortic Aneurysm, pp. 53–68. Springer, New York (2014)

    Google Scholar 

  5. Fillinger, M.F., Raghavan, M.L., Marra, S.P., Cronenwett, J.L., Kennedy, F.E.: In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3), 589–597 (2002)

    Article  Google Scholar 

  6. Folkesson, M., Silveira, A., Eriksson, P., Swedenborg, J.: Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218(2), 294–299 (2011)

    Article  Google Scholar 

  7. Fontaine, V., Jacob, M.-P., Houard, X., Rossignol, P., Plissonnier, D., Angles-Cano, E., Michel, J.-B.: Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. The Am. J. Pathol. 161(5), 1701–1710 (2002)

    Article  Google Scholar 

  8. Hans, S.S., Jareunpoon, O., Balasubramaniam, M., Zelenock, G.B.: Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41(4), 584–588 (2005)

    Article  Google Scholar 

  9. Harter, L.P., Gross, B.H., Callen, P.W., Barth, R.A.: Ultrasonic evaluation of abdominal aortic thrombus. J. Ultrasound Med. 1(8), 315–318 (1982)

    Google Scholar 

  10. Houard, X., Leclercq, A., Fontaine, V., Coutard, M., Martin-Ventura, J.-L., Ho-Tin-Noé, B., Touat, Z., Meilhac, O., Michel, J.-B.: Retention and activation of blood-borne proteases in the arterial wall: Implications for atherothrombosis. J. Am. Coll. Cardiol. 48(9)(Suppl.), A3–A9 (2006)

    Google Scholar 

  11. Julian, D., Scott, A., Prasad, P., Philippou, H., Rashid, S.T., Sohrabi, S., Whalley, D., Kordowicz, A., Tang, Q., West, R.M., Johnson, A., Woods, J., Ajjan, R.A., Ariens, R.A.S.: Clot architecture is altered in abdominal aortic aneurysms and correlates with aneurysm size. Arterioscler. Thromb. Vasc. Biol. 31(12), 3004–3010 (2011)

    Article  Google Scholar 

  12. Kleinstreuer, C., Li, Z.: Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed. Eng. OnLine 5(1), 19 (2006)

    Article  Google Scholar 

  13. Kwon, S.T., Rectenwald, J.E., Baek, S.: Intrasac pressure changes and vascular remodeling after endovascular repair of abdominal aortic aneurysms: Review and biomechanical model simulation. J. Biomech. Eng. 133, 011011 (2011)

    Article  Google Scholar 

  14. Meyer, C.A. Jr., Moore, J.E., Guivier-Curien, C.: Trans-thrombus blood pressure effects in abdominal aortic aneurysms. J. Biomech. Eng. 132(7), 071005–071005 (2010)

    Article  Google Scholar 

  15. Myrnp, M.I., Trosien, J.A., Fontaine, V., Folkesson, M., Kazi, M., Eriksson, P., Swedenborg, J., Hedin, U.: Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J. Vasc. Surg. 50(2), 388–395; Discussion 395–396 (2009)

    Google Scholar 

  16. Pappu, S., Dardik, A., Tagare, H., Gusberg, R.J.: Beyond fusiform and saccular: A novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential. Ann. Vasc. Surg. 22(1), 88–97 (2008)

    Article  Google Scholar 

  17. Polzer, S., Bursa, J.: Poroelastic model of intraluminal thrombus in FEA of aortic aneurysm. In: Lim, C.T., Goh, J.C.H. (eds.) 6th World Congress of Biomechanics (WCB 2010). Proceedings of the IFMBE, August 1–6, 2010 Singapore, vol. 31, pp. 763–767. Springer, Berlin (2010)

    Chapter  Google Scholar 

  18. Polzer, S., Gasser, T.C., Swedenborg, J., Bursa, J.: The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 41(4), 467–473 (2011)

    Article  Google Scholar 

  19. Pulinx, B., Hellenthal, F.A.M.V.I., Hamulyák, K., van Dieijen-Visser, M.P., Schurink, G.W.H., Wodzig, W.K.W.H.: Differential protein expression in serum of abdominal aortic aneurysm patients – a proteomic approach. Eur. J. Vasc. Endovasc. Surg. 42(5), 563–570 (2011)

    Article  Google Scholar 

  20. Reeps, C., Pelisek, J., Seidl, S., Schuster, T., Zimmermann, A., Kuehnl, A., Eckstein, H.-H.: Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76(5), 243–252 (2009)

    Article  Google Scholar 

  21. Saarinen, J., Kalkkinen, N., Welgus, H.G., Kovanen, P.T.: Activation of human interstitial procollagenase through direct cleavage of the leu83-thr84 bond by mast cell chymase. J. Biol. Chem. 269(27), 18134–18140 (1994)

    Google Scholar 

  22. Schurink, G.W., van Baalen, J.M., Visser, M.J., van Bockel, J.H.: Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J. Vasc. Surg. 31(3), 501–506 (2000)

    Article  Google Scholar 

  23. Seyedsalehi, S., Zhang, L., Choi, J., Baek, S.: Prior distributions of material parameters for Bayesian calibration of growth and remodeling computational model of abdominal aortic wall. In: BMES Annual Meeting, San Antonio, 24 October 2014

    Google Scholar 

  24. Takagi, H., Manabe, H., Kawai, N., Goto, S., Umemoto, T.: Circulating lipoprotein(a) concentrations and abdominal aortic aneurysm presence. Interact. Cardiovasc. Thorac. Surg. 9(3), 467–470 (2009)

    Article  Google Scholar 

  25. Tong, J., Cohnert, T., Regitnig, P., Holzapfel, G.A.: Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: Biaxial extension behaviour and material modelling. Eur. J. Vasc. Endovasc. Surg. 42(2), 207–219 (2011)

    Article  Google Scholar 

  26. Valentín, A., Cardamone, L., Baek, S., Humphrey, J.D.: Complementary vasoactivity and matrix remodeling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6, 293–306 (2009)

    Article  Google Scholar 

  27. Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9), 1887–1902 (2007)

    Article  Google Scholar 

  28. Vorp, D.A., Lee, P.C., Wang, D.H., Makaroun, M.S., Nemoto, E.M., Ogawa, S., Webster, M.W.: Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34(2), 291–299 (2001)

    Article  Google Scholar 

  29. Vorp, D.A., Wang, D.H., Webster, M.W., Federspiel, W.J.: Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. J. Biomech. Eng. 120(5), 579–583 (1998)

    Article  Google Scholar 

  30. Wang, D.H., Makaroun, M., Webster, M.W., Vorp, D.A.: Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123(6), 536–539 (2001)

    Article  Google Scholar 

  31. Wiernicki, I., Stachowska, E., Safranow, K., Cnotliwy, M., Rybicka, M., Kaczmarczyk, M., Gutowski, P.: Enhanced matrix-degrading proteolytic activity within the thin thrombus-covered wall of human abdominal aortic aneurysms. Atherosclerosis 212(1), 161–165 (2010)

    Article  Google Scholar 

  32. Wilson, J.S., Virag, L., Di Achille, P., Karsaj, I., Humphrey, J.D.: Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J. Biomech. Eng. 135(2), 021011 (2013)

    Article  Google Scholar 

  33. Gharahi, H., Zambrano, B., Lim, C.-Y., Choi, J., Lee, W., Baek, S.: An alternative method to measure the diameter of abdominal aortic aneurysms using maximally inscribed spheres. In: BMES Conference, San Antonio, 25 October 2014

    Google Scholar 

  34. Zeinali-Davarani, S., Raguin, L.G., Vorp, D.A., Baek, S.: Identification of in vivo material and geometric parameters of a human aorta: Toward patient-specific modeling of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 10, 689–699 (2011)

    Article  Google Scholar 

  35. Zeinali-Davarani, S., Sheidaei, A., Baek, S.: A finite element model of stress-mediated vascular adaptation: Application to abdominal aortic aneurysms. Comput. Methods Appl. Mech. Eng. 14(9), 803–817 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the NIH under R01HL115185 and the NSF under CAREER CMMI-1150376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungik Baek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Farsad, M., Zambrano, B.A., Baek, S. (2015). Data-Guided Growth and Remodeling Model of Abdominal Aortic Aneurysm Accounting for the Bio-chemical Effects of Intraluminal Thrombus. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-15503-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15503-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15502-9

  • Online ISBN: 978-3-319-15503-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics