Skip to main content

A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual Musculoskeletal Soft Tissue Models

  • Conference paper
Book cover Computational Biomechanics for Medicine

Abstract

Clinical evaluation of the mechanical condition in musculoskeletal soft tissues is challenging due to the wide range in morphology, size, and function of the anatomical structures. Virtual biomechanical simulations in 3D anatomical models reconstructed from medical imaging provide an instrument to receive feedback on realistic mechanics and deformation, but require an adequate computational representation of the anisotropic fibrous architecture. In this study, we investigate the application of a Laplacian based approach as a collective basis to generate fiber bundle orientations in 3D anatomical models of the various musculoskeletal soft tissue structures. Methodological adaptations for specific cases are evaluated, while feasibility is demonstrated in anatomical examples of muscles and joint connective tissue structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)

    Article  Google Scholar 

  2. Weiss, J.A., Gardiner, J.C., Ellis, B.J., et al.: Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10), 845–861 (2005)

    Article  Google Scholar 

  3. Kim, S.Y., Boynton, E.L., Ravichandiran, K., et al.: Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin. Anat. 20, 648–655 (2007)

    Article  Google Scholar 

  4. Klimstra, M., Dowling, J., Durkin, J.L., et al.: The effect of ultrasound probe orientation on muscle architecture measurement. J. Electromyogr. Kinesiol. 17, 504–514 (2007)

    Article  Google Scholar 

  5. Longwei, X.: Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J. 3(2), 58–59 (2012)

    Google Scholar 

  6. Kermarrec, E., Budzik, J.F., Khalil, C., et al.: In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. AJR Am. J. Roentgenol. 195, W352–W356 (2010)

    Article  Google Scholar 

  7. Belvedere, C., Ensini, A., Feliciangeli, A., et al.: Geometrical changes of knee ligaments and patellar tendon during passive flexion. J. Biomech. 45, 1886–1892 (2012)

    Article  Google Scholar 

  8. Blankevoort, L., Huiskes, R., de Lange, A.: Recruitment of knee joint ligaments. J. Biomech. Eng. 113, 94–103 (1991)

    Article  Google Scholar 

  9. Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – I: development of a microstructural model. Comput. Meth. Biomech. Biomed. Eng. 10(4), 307–316 (2007)

    Article  Google Scholar 

  10. Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – II: prediction of reaction force history of meniscal cartilage specimens. Comput. Meth. Biomech. Biomed. Eng. 10(5), 327–336 (2007)

    Article  Google Scholar 

  11. Hirokawa, S., Tsuruno, R.: Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J. Biomech. 33(9), 1069–1077 (2000)

    Article  Google Scholar 

  12. Lu, Y.T., Zhu, H.X., Richmond, S., et al.: Modelling skeletal muscle fibre orientation arrangement. Comput. Methods Biomech. Biomed. Eng. 14(12), 1079–1088 (2011)

    Article  Google Scholar 

  13. Erdemir, A.: Open knee: a pathway to community driven modeling and simulation in joint biomechanics. In: Proceedings of the ASME/FDA 2013 1st Annual Frontiers in Medical Devices, Washington, DC, USA (2013)

    Google Scholar 

  14. Maurice, X., Sandholm, A., Pronost, N., et al.: A subject-specific software solution for the modeling and the visualization of muscles deformations. Vis. Comput. 25(9), 835–842 (2009)

    Article  Google Scholar 

  15. Heimann, T., Chung, F., Lamecker, H., et al.: Subject-specific ligament models: toward real-time simulation of the knee joint. In: Computational Biomechanics for Medicine IV, pp. 107–119. Springer, New York (2010)

    Chapter  Google Scholar 

  16. Wu, F.T., Ng-Thow-Hing, V., Singh, K., et al.: Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models. Comput. Methods Programs Biomed. 88(2), 112–122 (2007)

    Article  Google Scholar 

  17. Choi, H.F., Blemker, S.S.: Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PLoS One 8(10), e77576 (2013)

    Article  Google Scholar 

  18. Greis, P.E., Bardana, D.D., Holmstrom, M.C., et al.: Meniscal injury: I. basic science and evaluation. J. Am. Acad. Orthop. Sur. 10(3), 168–176 (2002)

    Google Scholar 

  19. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods. Eng. 79, 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heemskerk, A.M., Sinha, T.K., Wilson, K.J., et al.: Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn. Reson. Med. 61(2), 467–472 (2009)

    Article  Google Scholar 

  21. Maas, S.A., Ellis, B.J., Atheshian, G.A., Weiss, J.A.: Febio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)

    Article  Google Scholar 

  22. Miranda, D.L., Rainbow, M.J., Leventhal, E.L., et al.: Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J. Biomech. 43(8), 1623–1626 (2010)

    Article  Google Scholar 

  23. McKenney, A., Greengard, L.: A fast Poisson solver for complex geometries. J. Comput. Phys. 118, 348–355 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wedmid, A., Llukani, E., Lee, D.I.: Future perspectives in robotic surgery. BJU Int. 108(6b), 1028–1036 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the EU FP7 Marie-Curie ITN project MultiScaleHuman under Grant number 289897. We thank the University Hospital of Geneva in Switzerland, for providing the medical images, and the biomechanics laboratory LBB-MHH of the medical school in Hanover, Germany, for the experimental data of knee displacement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Fai Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Choi, H.F., Chincisan, A., Magnenat-Thalmann, N. (2015). A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual Musculoskeletal Soft Tissue Models. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-15503-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15503-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15502-9

  • Online ISBN: 978-3-319-15503-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics