Skip to main content

Processing-Dependent Parameters: Structure and Morphology of Polymeric Materials

  • Chapter
Polymers on the Crime Scene
  • 1059 Accesses

Abstract

Processing is the mix of operations which are applied to materials when objects are made. A whole branch of engineering deals with the design of viable solutions to all the problems which can arise in the transformation of polymers. With a maybe rough approximation, it can be said that processing consists in the transfer of mechanical or thermal energy to the polymer, with the aim of mixing it with other substances and of shaping it in the desired final form. Processing is rarely mild, because the quest for maximisation of industrial production imposes the conditions which minimise the manufacturing time and which often correspond to high temperatures and shear forces. The polymer thus suffers a relevant mechanical and thermal stress, which is the main driving force determining the structure of the material in the solid state. The reason why this should be of interest to the forensic scientist is that processing-dependent parameters contain information extremely indicative of the manufacturer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugita R, Sasagawa K, Suzuki S (2009) Illegal route estimation of the seized illicit drug, methamphetamine, by the comparison of striation marks on plastic packaging films. J Forensic Sci 54:1341

    Article  CAS  Google Scholar 

  2. Berx V, De Kinder J (2002) 3D measurements on extrusion marks in plastic bags. J Forensic Sci 47:976

    Google Scholar 

  3. Denton S (1981) Extrusion marks in polythene film. J Forensic Sci Soc 21:259

    Article  Google Scholar 

  4. Stokes DJ (2003) Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Philos Trans R Soc London Ser A 361:2771

    Article  CAS  Google Scholar 

  5. Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  6. Alexander LE (1969) X-ray diffraction procedures in polymer science. Wiley, New York

    Google Scholar 

  7. Ladd M, Palmer R (eds) (2013) Structure determination by X-ray crystallography: analysis by X-rays and neutrons. Springer, New York

    Google Scholar 

  8. De Rosa C, Auriemma F (eds) (2014) Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals. Wiley, Hoboken

    Google Scholar 

  9. Turner Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromol Chem 75:134

    Article  CAS  Google Scholar 

  10. Hindeleh AM, Johnson DJ (1971) The resolution of multipeak data in fiber science. J Phys D Appl Phys 4:259

    Article  CAS  Google Scholar 

  11. Causin V, Marega C, Carresi P et al (2007) A quantitative differentiation method for plastic bags by wide angle X-ray diffraction for tracing the source of illegal drugs. Forensic Sci Int 168:37

    Article  CAS  Google Scholar 

  12. Causin V, Marega C, Marigo A et al (2010) Forensic differentiation of paper by X-ray diffraction and infrared spectroscopy. Forensic Sci Int 197:70

    Article  CAS  Google Scholar 

  13. Foner HA, Adan N (1983) The characterization of papers by X-ray diffraction (XRD): measurement of cellulose crystallinity and determination of mineral composition. J Forensic Sci Soc 23:313

    Article  CAS  Google Scholar 

  14. Chen R, Jakes KA, Foreman DW (2004) Peak-fitting analysis of cotton fiber powder X-ray diffraction spectra. J Appl Polym Sci 93:2019

    Article  CAS  Google Scholar 

  15. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9:735

    Article  CAS  Google Scholar 

  16. Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 105:2978

    Article  CAS  Google Scholar 

  17. Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183

    Article  CAS  Google Scholar 

  18. Yan Z, Chen S, Wang H et al (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Res 74:659

    Article  CAS  Google Scholar 

  19. Menczel JD, Prime RB (eds) (2009) Thermal analysis of polymers: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  20. Hatakeyama T, Quinn FX (1994) Thermal analysis: fundamentals and applications to polymer science. Wiley, Chichester

    Google Scholar 

  21. Tsukame T, Kutsuzawa M, Sekine H et al (1999) Identification of polyethylene by differential scanning calorimetry: application to forensic science. J Therm Anal Calorim 57:847

    Article  CAS  Google Scholar 

  22. Sajwan M, Aggarwal S, Singh RB (2008) Forensic characterization of HDPE pipes by DSC. Forensic Sci Int 175:130

    Article  CAS  Google Scholar 

  23. Causin V, Marega C, Marigo A et al (2009) A method based on thermogravimetry/differential scanning calorimetry for the forensic differentiation of latex gloves. Forensic Sci Int 188:57

    Article  CAS  Google Scholar 

  24. Causin V, Marega C, Carresi P et al (2006) A quantitative differentiation method for plastic bags by infrared spectroscopy, thickness measurement and differential scanning calorimetry for tracing the source of illegal drugs. Forensic Sci Int 164:148

    Article  CAS  Google Scholar 

  25. Yang L, Thomas P, Stuart B (2012) Discrimination of thermally treated low density polyethylenes using DSC and principal component analysis. J Therm Anal Calorim 108:445

    Article  CAS  Google Scholar 

  26. Causin V, Marega C, Marigo A (2007) When polymers fail: a case report on a defective epoxy resin flooring. Eng Fail Anal 14:1394

    Article  CAS  Google Scholar 

  27. Causin V, Marega C, Guzzini G et al (2004) Forensic analysis of poly(ethylene terephthalate) fibers by infrared spectroscopy. Appl Spectrosc 58:1272

    Article  CAS  Google Scholar 

  28. Causin V, Marega C, Guzzini G et al (2005) The effect of exposure to the elements on the forensic characterization by infrared spectroscopy of poly(ethylene terephthalate) fibers. J Forensic Sci 50:887

    Article  CAS  Google Scholar 

  29. Rajakumar K, Sarasvathy V, Thamarai Chelvan A et al (2009) Natural weathering studies of polypropylene. J Polym Environ 17:191

    Article  CAS  Google Scholar 

  30. Horrocks AR, Mwila J, Miraftab M et al (1999) The influence of carbon black on properties of orientated polypropylene 2. Thermal and photodegradation. Polym Degrad Stab 65:25

    Article  CAS  Google Scholar 

  31. Cherukupalli SS, Ogale AA (2004) Online measurements of crystallinity using Raman spectroscopy during blown film extrusion of a linear low-density polyethylene. Polym Eng Sci 44:1484

    Article  CAS  Google Scholar 

  32. Quynn RG, Riley JL, Young DA et al (1959) Density, crystallinity, and heptane insolubility in isotactic polypropylene. J Appl Polym Sci 2:166

    Article  CAS  Google Scholar 

  33. Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671

    Article  CAS  Google Scholar 

  34. Samuels RJ (1981) Application of refractive index measurements to polymer analysis. J Appl Polym Sci 26:1383

    Article  CAS  Google Scholar 

  35. Dabbs MDG, Pearson EF (1972) Some physical properties of a large number of window glass specimens. J Forensic Sci 17:70

    CAS  Google Scholar 

  36. Causin V, Marega C, Schiavone S et al (2005) Employing glass refractive index measurement (GRIM) in fiber analysis: a simple method for evaluating the crystallinity of acrylics. Forensic Sci Int 149:193

    Article  CAS  Google Scholar 

  37. Palenik SJ (1999) Microscopical examination of fibres. In: Robertson J, Grieve M (eds) Forensic examination of fibres. Taylor and Francis, London

    Google Scholar 

  38. Curran JM, Hicks TN, Buckleton JS (eds) (2000) Forensic interpretation of glass evidence. CRC Press, Boca Raton

    Google Scholar 

  39. Ojena SM, DeForest PR (1972) Precise refractive index determination by the immersion method, using phase contrast microscopy and the Mettler hot stage. J Forensic Sci 12:315

    Article  CAS  Google Scholar 

  40. Abragam A (1983) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  41. Orza RA, Magusin PCMM, Litvinov VM et al (2007) Solid-state 1H NMR study on chemical cross-links, chain entanglements, and network heterogeneity in peroxide-cured EPDM rubbers. Macromolecules 40:8999

    Article  CAS  Google Scholar 

  42. Chinn SC, Cook-Tendulkar A, Maxwell R et al (2007) Qualification of automated low-field NMR relaxometry for quality control of polymers in a production setting. Polym Test 26:1015

    Article  CAS  Google Scholar 

  43. Jensen SM, Pedersen HT, Engelsen SB (1999) Application of chemometrics to low-field 1H NMR relaxation data of intact fish flesh. J Sci Food Agric 79:1793

    Article  Google Scholar 

  44. Standard test method for hydrogen content of middle distillate petroleum products by low-resolution pulsed nuclear magnetic resonance spectroscopy (2005) ASTM International, 2003, West Conshohocken

    Google Scholar 

  45. Maus A, Hertlein C, Saalwaechter K (2006) A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys 207:1150

    Article  CAS  Google Scholar 

  46. Mauri M, Thomann Y, Schneider H et al (2008) Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nucl Magn Reson 34:125

    Article  CAS  Google Scholar 

  47. Mauri M, Dibbanti MK, Calzavara M et al (2013) Time domain nuclear magnetic resonance: a key complementary technique for the forensic differentiation of foam traces. Anal Methods 5:4336

    Article  CAS  Google Scholar 

  48. Mauri M, Mauri L, Causin V et al (2011) A method based on time domain nuclear magnetic resonance for the forensic differentiation of latex gloves. Anal Methods 3:1802

    Article  CAS  Google Scholar 

  49. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630

    Article  CAS  Google Scholar 

  50. Schmidt-Rohr K, Spiess HW (1999) Multidimensional solid-state NMR and polymers. Academic, San Diego

    Google Scholar 

  51. Smith JM (2007) Forensic examination of pressure sensitive tape. In: Blackledge RD (ed) Forensic analysis on the cutting edge. Wiley, Hoboken

    Google Scholar 

  52. De Wael K (2012) Dichroism measurements in forensic fibre examination. Part 4—dyed acrylic and acetate fibres. Sci Justice 52:81

    Article  Google Scholar 

  53. De Wael K, Lepot L (2012) Dichroism measurements in forensic fibre examination: part 5—pigmented fibres. Sci Justice 52:161

    Article  Google Scholar 

  54. De Wael K, Lepot L, Lunstroot K (2012) The use of linear dichroism in forensic fibre examinations—part 6. Validation and practical aspects of MSP-PPL. Sci Justice 52:249

    Article  Google Scholar 

  55. De Wael K, Lepot L (2011) Dichroism measurements in forensic fibre examination part 3—dyed cotton and viscose fibres. Sci Justice 51:173

    Article  Google Scholar 

  56. De Wael K, Vanden Driessche T (2011) Dichroism measurements in forensic fibre examination. Part 2—dyed polyamide, wool and silk fibres. Sci Justice 51:163

    Article  Google Scholar 

  57. De Wael K, Vanden Driessche T (2011) Dichroism measurements in forensic fibre examination part 1—dyed polyester fibres. Sci Justice 51:57

    Article  Google Scholar 

  58. Hedesiu C, Demco DE, Remerie K et al (2008) Study of uniaxially stretched isotactic poly(propylene) by 1H solid-state NMR and IR spectroscopy. Macromol Chem Phys 209:734

    Article  CAS  Google Scholar 

  59. Cho LL, Reffner JA, Gatewood BM et al (1999) A new method for fiber comparison using polarized infrared microspectroscopy. J Forensic Sci 44:275

    CAS  Google Scholar 

  60. Boulet-Audet M, Lefevre T, Buffeteau T et al (2008) Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers. Appl Spectrosc 62:956

    Article  CAS  Google Scholar 

  61. Cho LL, Reffner JA, Wetzel DL (1999) Forensic classification of polyester fibers by infrared dichroic ratio pattern recognition. J Forensic Sci 44:283

    CAS  Google Scholar 

  62. Wetzel DL, Cho LL (1997) Single fiber characterization by polarization FT-IR microspectroscopy. Mikrochim Acta Suppl 14:349

    CAS  Google Scholar 

  63. Causin V (2010) Polymers on the crime scene: how can analytical chemistry help to exploit the information from these mute witnesses? Anal Methods 2:792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Causin, V. (2015). Processing-Dependent Parameters: Structure and Morphology of Polymeric Materials. In: Polymers on the Crime Scene. Springer, Cham. https://doi.org/10.1007/978-3-319-15494-7_7

Download citation

Publish with us

Policies and ethics