Skip to main content

Synthesis-Dependent Parameters: Molecular Weight, Constitution and Configuration

  • Chapter
Polymers on the Crime Scene
  • 1044 Accesses

Abstract

As outlined in Chap. 1, any polymeric object is actually a composite, containing a number of ingredients with different functions. Of course, the matrix is the fundamental component because it constitutes the largest portion of the material. The scheme in Fig. 1.1 shows that the characterisation of the polymer matrix can be organised along two main directions. One is focused on the molecular features directly related to the polymerisation process, the other is centred upon the description of the structure and morphology attained by the material. In the former approach, the constitution and the configuration (Sect. 2.7) of the polymer are investigated. Constitution defines which repeat units are present in the macromolecules and how they are connected together. Section 5.7 introduced the issue of the identification of the polymer matrix, mostly with the aim of broadly classifying the type of material within the families described in Sect. 2.8. However, much more information can be obtained, in order to discriminate between materials pertaining to the same class. Molecular weight, the presence of comonomers or the regularity of the sequence of repeat units are constitutional features which can be exploited for this purpose. The tacticity of the polymeric chains, i.e. the evenness of the succession of the configuration of the repeat units, is another important attribute which is directly dependent on the ability of the polymerisation process to control the stereoregularity of the synthesis. All these characteristics cannot be modified without breaking chemical bonds, and are therefore the result of the reactions involved in the synthesis of the material. On the other hand, processing has a very negligible role in influencing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salam LA, Matthews RD, Robertson H (2000) Pyrolysis of poly-methyl methacrylate (PMMA) binder in thermoelectric green tapes made by the tape casting method. J Eur Ceram Soc 20:335

    Article  CAS  Google Scholar 

  2. Tungol MW, Bartick EG, Montaser A (1990) The development of a spectral data base for the identification of fibers by infrared microscopy. Appl Spectrosc 44:543

    Article  CAS  Google Scholar 

  3. Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. J Polym Sci B Polym Phys 5:753

    Article  Google Scholar 

  4. McGee WW, Coraine K, Strimaitis J (1979) Use of gel permeation chromatography in the crime laboratory. J Liq Chromatogr 2:287

    Article  CAS  Google Scholar 

  5. Kumooka Y (2007) Discrimination of rubber-based pressure sensitive adhesives by size exclusion chromatography. Forensic Sci Int 171:5

    Article  CAS  Google Scholar 

  6. Smith JM (2007) Forensic examination of pressure sensitive tape. In: Blackledge RD (ed) Forensic analysis on the cutting edge. Wiley, Hoboken

    Google Scholar 

  7. Farah S, Tsach T, Bentolila A et al (2014) Morphological, spectral and chromatography analysis and forensic comparison of PET fibers. Talanta 123:54

    Article  CAS  Google Scholar 

  8. Gross JH (2011) Mass spectrometry: a textbook, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  9. Matsuo T, Matsuda H, Katakuse I (1979) Use of field desorption mass spectra of polystyrene and polypropylene glycol as mass references up to mass 10000. Anal Chem 51:1329

    Article  CAS  Google Scholar 

  10. Lattimer RP (2001) Field ionization and field desorption. In: Montaudo G, Lattimer RP (eds) Mass spectrometry of polymers. CRC Press, Boca Raton

    Google Scholar 

  11. Montaudo G, Samperi F, Montaudo MS (2006) Characterization of synthetic polymers by MALDI-MS. Prog Polym Sci 31:277

    Article  CAS  Google Scholar 

  12. Jackson AT, Yates HT, Scrivens JH et al (1996) The application of matrix-assisted laser desorption/ionization combined with collision-induced dissociation to the analysis of synthetic polymers. Rapid Commun Mass Spectrom 10:1668

    Article  CAS  Google Scholar 

  13. Kassis CM, DeSimone JM, Linton RW et al (1997) An investigation into the importance of polymer–matrix miscibility using surfactant modified matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 11:1462

    Article  CAS  Google Scholar 

  14. Montaudo G, Montaudo MS, Puglisi C et al (1994) Self-calibrating property of matrix-assisted laser desorption/ionization time-of-flight spectra of polymeric materials. Rapid Commun Mass Spectrom 8:981

    Article  CAS  Google Scholar 

  15. Tang X, Dreifuss PA, Vertes A (1995) New matrices and accelerating voltage effects in matrix-assisted laser desorption/ionization of synthetic polymers. Rapid Commun Mass Spectrom 9:1141

    Article  CAS  Google Scholar 

  16. Rashidezadeh H, Baochuan G (1998) Investigation of metal attachment to polystyrenes in matrix-assisted laser desorption ionization. J Am Soc Mass Spectrom 9:724

    Article  CAS  Google Scholar 

  17. Rashidezadeh H, Hung K, Baochuan G (1998) Probing polystyrene cationization in matrix-assisted laser/desorption ionization. Eur J Mass Spectrom 4:429

    Article  CAS  Google Scholar 

  18. Goldschmitt RJ, Wetzel SJ, Blair WR et al (2000) Post-source decay in the analysis of polystyrene by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 11:1095

    Article  Google Scholar 

  19. Kéki S, Deak G, Zsuga M (2001) Copper(I) chloride: a simple salt for enhancement of polystyrene cationization in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 15:675

    Article  Google Scholar 

  20. Malvagna P, Impallomeni G, Cozzolino R et al (2002) New results on matrix-assisted laser desorption/ionization mass spectrometry of widely polydisperse hydrosoluble polymers. Rapid Commun Mass Spectrom 16(16):1599–1603

    Article  CAS  Google Scholar 

  21. Laramée JA, Cody RB, Nilles JM et al (2007) Forensic application of dart mass spectrometry. In: Blackledge RD (ed) Forensic analysis on the cutting edge. Wiley, Hoboken

    Google Scholar 

  22. Bugler JH, Buchner H, Dallmayer A (2005) Characterization of ballpoint pen inks by thermal desorption and gas chromatography-mass spectrometry. J Forensic Sci 50:1209

    Article  Google Scholar 

  23. Kumooka Y (2008) Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Sci Int 176:111

    Article  CAS  Google Scholar 

  24. Thomas JJ, Shen ZX, Blackledge R et al (2001) Desorption-ionization on silicon mass spectrometry: an application in forensics. Anal Chim Acta 442:183

    Article  CAS  Google Scholar 

  25. Bikiaris D, Karavelidis V, Karavas E (2009) Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene hcl loaded nanoparticles. Molecules 14:2410

    Article  CAS  Google Scholar 

  26. Al-AbdulRazzak S, Lofgren EA, Jabarin SA (2002) End-group determination in poly(ethylene terephthalate) by infrared spectroscopy. Polym Int 51:174

    Article  CAS  Google Scholar 

  27. Koenig JL (1992) Spectroscopy of polymers. American Chemical Society, Washington, DC

    Google Scholar 

  28. Lu DD, Yuan JC, Lei ZQ (2009) High molecular weight biodegraded poly(lactic acid-glycolic acid-ε-caprolactam) copolymer: direct polycondensation of lactic acid, glycolic acid and ε-caprolactam using Sn(II)-organic anhydride as catalysts. Polym Adv Technol 20:536

    Article  CAS  Google Scholar 

  29. Campbell D, Pethrick RA, White JR (2000) Polymer characterization: physical techniques. Stanley Thornes, Cheltenham

    Google Scholar 

  30. Sağlam M (1986) Qualitative and quantitative analysis of methyl acrylate or methyl methacrylate of acrylonitrile fibers by pyrolysis gas chromatography. J Appl Polym Sci 32:5719

    Article  Google Scholar 

  31. Grieve MC (1995) Another look at the classification of acrylic fibres, using FTIR microscopy. Sci Justice 35:179

    Article  CAS  Google Scholar 

  32. Grieve MC, Griffin RME (1999) Is it a modacrylic fibre? Sci Justice 39:151

    Article  CAS  Google Scholar 

  33. Causin V, Marega C, Schiavone S et al (2005) A quantitative differentiation method for acrylic fibers by infrared spectroscopy. Forensic Sci Int 151:125

    Article  CAS  Google Scholar 

  34. Tungol MW, Bartick EG, Montaser A (1993) Forensic analysis of acrylic copolymer fibers by Infrared Microscopy. Appl Spectrosc 47:1655

    Article  CAS  Google Scholar 

  35. Kakida H, Tashiro K (1998) Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers IV. Effects of atmosphere on isothermal dsc thermograms and ft-ir spectral changes during stabilization reaction of acrylonitrile/methacrylic acid copolymer. Polym J 30:463

    Article  CAS  Google Scholar 

  36. Almer J (1991) Subclassification of polyacrylonitrile fibres by pyrolysis capillary gas chromatography. J Can Soc Forensic Sci 24:51

    Article  CAS  Google Scholar 

  37. Minagawa M, Onuma H, Ogita T et al (2001) Pyrolysis gas chromatographic analysis of polyacrylonitrile. J Appl Polym Sci 29:473

    Article  Google Scholar 

  38. Surianarayanan M, Vijayaraghavan R, Raghavan KV (1998) Spectroscopic investigations of polyacrylonitrile thermal degradation. J Polym Sci A Polym Chem 36:2503

    Article  CAS  Google Scholar 

  39. Causin V, Marega C, Schiavone S et al (2006) Forensic analysis of acrylic fibers by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 75:43

    Article  CAS  Google Scholar 

  40. Veerkamp TA, Veermans A (1961) On the structure of copolymers of ethylene and propylene. Die Makromol Chem 50:147

    Article  CAS  Google Scholar 

  41. Karger-Kocsis J (1995) Polypropylene: structure and morphology, vol 1. Springer, Berlin

    Google Scholar 

  42. Bucci G, Simonazzi T (1961) Contribution to the study of ethylene-propylene copolymers by infrared spectroscopy. Distribution of the monomeric units. J Polym Sci C Polym Symp 7:203

    Article  Google Scholar 

  43. Ciampelli F, Valvassori A (1967) Infrared study on the distribution of propylene units in ethylene—propylene copolymers. J Polym Sci C Polym Symp 16:377

    Article  Google Scholar 

  44. Natta G, Valvassori A, Ciampelli F et al (1965) Some remarks on amorphous and atactic α-olefin polymers and random ethylene–propylene copolymers. J Polym Sci A 3:1

    CAS  Google Scholar 

  45. Kurahashi K, Matsuda Y, Miyashita Y et al (2006) The application of novel polypropylene to the insulation of electric power cable (3). Electr Eng Jpn 155:1

    Article  Google Scholar 

  46. Kim KW, Yoshino K, Inoue T, Abe M, Uchikawa N (1999) Influence of morphology on electrical properties of syndiotactic polypropylene compared with those of isotactic polypropylene. Jpn J Appl Phys 38:3580

    Article  CAS  Google Scholar 

  47. Malpass DB, Band E (2012) Introduction to industrial polypropylene: properties, catalysts processes. Scrivener, Beverly

    Book  Google Scholar 

  48. Burfield DR, Loi PST (1988) The use of infrared spectroscopy for determination of polypropylene stereoregularity. J Appl Polym Sci 36:279

    Article  CAS  Google Scholar 

  49. Sundell T, Fagerholm H, Crozier H (1996) Isotacticity determination of polypropylene using FT-Raman spectroscopy. Polymer 37:3227

    Article  CAS  Google Scholar 

  50. Kissin YV, Rishina LA (1976) Regularity bands in the i.r. spectra of C3H6-C3D6 copolymers. Eur Polym J 12:757

    Article  CAS  Google Scholar 

  51. Kissin YV, Tsvetkova VI, Chirkov NM (1972) The stereoregularity of polypropylene from i.r. and nmr data. Eur Polym J 8:529

    Article  CAS  Google Scholar 

  52. Quynn RG, Riley JL, Young DA et al (1959) Density, crystallinity, and heptane insolubility in isotactic polypropylene. J Appl Polym Sci 2:166

    Article  CAS  Google Scholar 

  53. Kobayashi M, Tashiro K, Tadokoro H (1975) Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8:158

    Article  CAS  Google Scholar 

  54. Maccone P, Brunati G, Arcella V (2000) Environmental stress cracking of poly(vinylidenefluoride) in sodium hydroxide. Effect of chain regularity. Polym Eng Sci 40:761

    Article  CAS  Google Scholar 

  55. da Conceicao TF, Scharnagl N, Dietzel W et al (2011) Study on the interface of PVDF coatings and HF-treated AZ31 magnesium alloy: determination of interfacial interactions and reactions with self-healing properties. Corros Sci 53:712

    Article  Google Scholar 

  56. Bormashenko Y, Pogreb R, Stanevsky O et al (2004) Vibrational spectrum of PVDF and its interpretation. Polym Test 23:791

    Article  CAS  Google Scholar 

  57. Boccaccio T, Bottino A, Capannelli G et al (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Causin, V. (2015). Synthesis-Dependent Parameters: Molecular Weight, Constitution and Configuration. In: Polymers on the Crime Scene. Springer, Cham. https://doi.org/10.1007/978-3-319-15494-7_6

Download citation

Publish with us

Policies and ethics