Skip to main content

Information from Parameter Values

  • Chapter
  • First Online:
Deterministic Kinetics in Chemistry and Systems Biology

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1040 Accesses

Abstract

The importance of the values of parameters occurring in a rate equation is usually secondary compared to the functional from of the rate equation itself. However, the values sometimes carry important information and the values can be used to validate theoretical ideas. This chapter derives maximum rate constants for diffusion controlled reactions, then introduces the concept of activation and the activation parameters. The Arrhenius and Eyring equations are given special emphasis in interpreting the temperature dependence of rate constants. Slight systematic changes in the chemical structure of a reagent can often give rise to insight into how a process works. The usual forms and validity range of the linear free energy relationship is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This author believes that an experiment cannot be wrong, but its information content can be seriously misinterpreted.

  2. 2.

    The notations Δ ‡ G, Δ ‡ H, and Δ ‡ S follow IUPAC recommendations. In actual use, the forms Δ G ‡, Δ H ‡, and Δ S ‡ are a lot more common in the literature.

  3. 3.

    It is much more common to use e to denote the charge of an electron. Yet this text uses e t very often for the exponential function, so it seemed necessary to avoid possible confusions by selecting the notation Q e instead of the usual one.

  4. 4.

    The reader should not confuse the dipole moment used here with the reduced mass defined in Eq. (4.2) despite the fact that, following well-established conventions, the Greek letter μ is used to denote both of these different physical quantities.

References

  1. Arrhenius, H.: Zur Theorie der chemischen Reaktionsgeschwindigkeit. Z. Phys. Chem. 28, 317–335 (1899)

    Google Scholar 

  2. Bligaard, T., Norskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J.: The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004)

    Article  CAS  Google Scholar 

  3. Bjerrum, N.: Theory of chemical reaction velocity. Z. Phys. Chem. 108, 82–100 (1924)

    CAS  Google Scholar 

  4. Brønsted, J.N., Teeter Jr., C.E.: Kinetic salt effect. J. Phys. Chem. 28, 579–587 (1924)

    Article  Google Scholar 

  5. Brønsted, J.N.: Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928)

    Article  Google Scholar 

  6. Carroll, H.F.: Why the Arrhenius equation is always in the “Exponentially Increasing” region in chemical kinetic studies. J. Chem. Educ. 75, 1186–1187 (1998)

    Article  CAS  Google Scholar 

  7. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185–206 (1923)

    CAS  Google Scholar 

  8. Edwards, J.O.: Polarizability, basicity and nucleophilic character. J. Am. Chem. Soc. 78, 1819–1820 (1956)

    Article  CAS  Google Scholar 

  9. Edward, J.T.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970)

    Article  CAS  Google Scholar 

  10. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549–560 (1905)

    Article  CAS  Google Scholar 

  11. Evans, M.G., Polanyi, M.: Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938)

    Article  CAS  Google Scholar 

  12. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–114 (1935)

    Article  CAS  Google Scholar 

  13. Eyring, H.: The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935)

    Article  CAS  Google Scholar 

  14. Eyring, H.: The calculation of activation energies. Trans. Faraday Soc. 34, 3–11 (1938)

    Article  CAS  Google Scholar 

  15. Hammett, L.P.: Some relations between reaction rates and equilibrium constants. Chem. Rev. 17, 125–136 (1935)

    Article  CAS  Google Scholar 

  16. Kirkwood, J.G.: Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions. J. Chem. Phys. 2, 351–361 (1934)

    Article  CAS  Google Scholar 

  17. Laidler, K.J.: The development of the Arrhenius equation. J. Chem. Educ. 61, 494–498 (1984)

    Article  CAS  Google Scholar 

  18. Logan, S.R.: The origin and status of the Arrhenius equation. J. Chem. Educ. 59, 279–281 (1982)

    Article  CAS  Google Scholar 

  19. L’vov, B.V.: Activation effect in heterogeneous decomposition reactions: fact or fiction? Reac. Kinet. Mech. Cat. 111, 415–429 (2014)

    Article  Google Scholar 

  20. Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Ann. Rev. Phys. Chem. 15, 155–196 (1965)

    Article  Google Scholar 

  21. Marcus, R.A.: On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–700 (1965)

    CAS  Google Scholar 

  22. Noyes, R.M.: Effects of diffusion rates on chemical kinetics. Prog. Reac. Kinet. 1, 129–160 (1961)

    CAS  Google Scholar 

  23. Stokes, G.: On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Phil. Soc. 9, 8–106 (1856)

    Google Scholar 

  24. Swain, C.G., Scott, C.B.: Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides and acyl halides. J. Am. Chem. Soc. 75, 141–147 (1953)

    Google Scholar 

  25. von Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  26. Taft Jr., R.W.: Polar and steric substituent constants for aliphatic and o-Benzoate groups from rates of esterification and hydrolysis of esters. J. Am. Chem. Soc. 75, 3120–3128 (1952)

    Article  Google Scholar 

  27. Taft Jr., R.W.: Linear Steric Energy Relationships. J. Am. Chem. Soc. 75, 4538–4539 (1953)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Gábor Lente

About this chapter

Cite this chapter

Lente, G. (2015). Information from Parameter Values. In: Deterministic Kinetics in Chemistry and Systems Biology. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-15482-4_4

Download citation

Publish with us

Policies and ethics