Skip to main content

Solvent-Free Functionalization of Carbon Nanomaterials

  • Chapter
Green Processes for Nanotechnology

Abstract

Meeting the growing needs for more ecologically friendly, “green” processes for the functionalization of carbon nanomaterials (CNMs), a variety of chemical reactions proceeding under solvent-free conditions were proposed. Significant advances were achieved in the solvent-free covalent functionalization of carbon nanotubes (CNTs): a number of reactions were proposed to introduce organic moieties into the nanotube ends and sidewalls, which can be initiated by temperature, plasma, or mechanochemical treatment. In a number of instances, however, the concept “solvent-free” is applied to the reaction conditions only, whereas the entire synthetic protocol still requires auxiliary purification steps, which consume organic solvents along with an additional time, labor, and equipment. Our group systematically worked on the development of totally solvent-free functionalization techniques, with an emphasis on the covalent modification of CNTs, and attempting to further apply the same solvent-free protocols to other CNMs, nanodiamond in particular. The functionalization protocols designed by us are based on thermally activated reactions of amidation and nucleophilic addition with chemical compounds (mainly amines and thiols), which are stable and volatile at 150–200 °C under reduced pressure. Among main advantages of this approach is that not only the reactions per se take place at a high rate but also excess reagents are spontaneously removed from the functionalized material, thus making its additional purification unnecessary. As regards other CNMs, while the research effort undertaken for the chemical modification of ND, graphene, and graphene oxide as a whole is significant, the possibility of using solvent-free techniques for this purpose remains strongly underexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhushan B (ed) (2012) Encyclopedia of nanotechnology, vol 1–4. Springer, New York, NY

    Google Scholar 

  2. Nalwa HS (ed) (2004) Encyclopedia of nanoscience and nanotechnology, vol 1–10. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  3. Nalwa HS (2011) Encyclopedia of nanoscience and nanotechnology, vol 11–25. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  4. Langa F, Nierengarten J-F (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  5. Basiuk VA, Basiuk EV (eds) (2008) Chemistry of carbon nanotubes, vol 1–3. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  6. Shenderova OA, Gruen DM (eds) (2012) Ultrananocrystalline diamond: synthesis, properties and applications, 2nd edn. Elsevier, Oxford, UK

    Google Scholar 

  7. Rao CNR, Sood AK (eds) (2013) Graphene: synthesis, properties, and phenomena. Wiley-VCH, Weinheim

    Google Scholar 

  8. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253

    Google Scholar 

  9. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096

    Google Scholar 

  10. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193

    Google Scholar 

  11. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366

    Google Scholar 

  12. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156

    Google Scholar 

  13. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11

    Google Scholar 

  14. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, NY, p 30

    Google Scholar 

  15. Zhu S-E, Li F, Wang G-W (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42(7535)

    Google Scholar 

  16. Hirsch A, Li Q, Wudl F (1991) Globe-trotting hydrogens on the surface of the fullerene compound C60H6(N(CH2CH2)2O)6. Angew Chem Int Ed Engl 30:1309

    Google Scholar 

  17. Wudl F, Hirsch A, Khemani KC, Suzuki T, Allemand PM, Koch HE, Srdanov G, Webb HM (1992) Survey of chemical reactivity of C60, electrophile and dieno—polarophile par excellence, In: Hammond GS, Kuck VJ (eds) Fullerenes: synthesis, properties and chemistry of large carbon clusters. ACS Symp Ser Vol. 48, Chapter 11, p 161

    Google Scholar 

  18. Seshadri R, Govindaraj A, Nagarajan R, Pradeep T, Rao CNR (1992) Addition of amines and halogens with fullerenes C60 and C70. Tetrahedron Lett 33:2069

    Google Scholar 

  19. Kampe KD, Egger N, Vogel M (1993) Diamino and tetraamino derivatives of buckminsterfullerene C60. Angew Chem Int Ed Engl 32:1174

    Google Scholar 

  20. Troshina AO, Thoshin PA, Peregudov AS, Kozlovski VI, Lyubovskaya RN (2006) Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives. Chem Eur J 12:5569

    Google Scholar 

  21. Isobe H, Tomita N, Nakamura E (2000) One-step multiple-addition of amine to [60]fullerene. Synthesis of tetra(amino)fullerene epoxide under photochemical aerobic conditions. Org Lett 2:3663

    Google Scholar 

  22. Lawson GE, Kitaygorodskiy A, Ma B, Bunker CE, Sun YP (1995) Photoinduced Inter- and Intra-molecular electron transfer reactions of [60]fullerene and a tertiary amine. Formation of the cycloadduct N-ethyl-trans-2',5'-dimethylpyrrolidino[3',4':1,2][60]fullerene. J Chem Soc Chem Commun 21:2225

    Google Scholar 

  23. Wang GW, Chen XP, Cheng X (2006) Unexpected reactions of [60]fullerene involving tertiary amines and insight into the reaction mechanisms. Chem Eur J 12:7246

    Google Scholar 

  24. Basiuk (Golovataya-Dzhymbeeva) EV, Basiuk VA, Shabel’nikov VP, Golovatyi VG, Flores JO, Saniger JM (2003) Reaction of silica-supported fullerene C60 with nonylamine vapor. Carbon 41:2339

    Google Scholar 

  25. Amelines-Sarria O, Basiuk VA (2009) Multiple addition of methylamine to fullerene C60: a density functional theory study. J Comput Theor Nanosci 6:73

    Google Scholar 

  26. Contreras-Torres FF, Basiuk VA, Basiuk EV (2008) Regioselectivity in azahydro[60]fullerene derivatives: application of general-purpose reactivity indicators. J Phys Chem A 112:8154

    Google Scholar 

  27. Amelines-Sarria O, Basiuk VA (2009) A DFT study of methylamine polyaddition to C80 fullerene. Superlattice Microst 46:302

    Google Scholar 

  28. Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E, Acosta-Najarro D, Basiuk VA (2007) Cross-linking of C60 films with 1,8-diaminooctane and further decoration with silver nanoparticles. J Nanosci Nanotechnol 7:3563

    Google Scholar 

  29. Basiuk EV, Zauco EA, Basiuk VA (2006) Chemical cross-linking in C60 thin films (Chapter 20). In: Mahalik NP (ed) Micromanufacturing and Nanotechnology. Springer, Berlin, p 453

    Google Scholar 

  30. Dmitruk NL, Borkovskaya OY, Mamontova IB, Kondratenko OS, Naumenko DO, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E (2007) Optical and electrical characterization of chemically and photopolymerized C60 thin films on silicon substrates. Thin Solid Films 515:7716

    Google Scholar 

  31. Dmitruk NL, Borkovskaya OY, Mamykin SV, Naumenko DO, Berezovska NI, Dmitruk IM, Meza-Laguna V, Alvarez-Zauco E, Basiuk EV (2008) Fullerene C60-silver nanoparticles hybrid structures: optical and photoelectric characterization. J Nanosci Nanotechnol 8:5958

    Google Scholar 

  32. Martínez-Loran E, Alvarez-Zauco E, Basiuk VA, Basiuk EV, Bizarro M (2011) Fullerene thin films functionalized by 1,5-diaminonaphthalene: preparation and properties. J Nanosci Nanotechnol 11:5569

    Google Scholar 

  33. Dmitruk NL, Borkovskaya OY, Naumenko DO, Mamontova IB, Berezovska NI, Dmitruk IM, Meza-Laguna V, Basiuk EV (2011) Effect of thin C60 films modification with aminosubstituted polycyclic aromatic hydrocarbons and meso-tetraphenylporphine on optical and photoelectric properties of Au/C60/Si photodiode structures. Mol Cryst Liq Cryst 535:10

    Google Scholar 

  34. Contreras-Torres FF, Basiuk EV, Basiuk VA, Meza-Laguna V, Gromovoy TY (2012) Nanostructured diamine-fullerene derivatives: computational DFT study and experimental evidence for their formation via gas-phase functionalization. J Phys Chem A 116:1663

    Google Scholar 

  35. Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E, Gromovoy TY, Amelines-Sarria O, Bassiouk M, Puente-Lee I, Basiuk VA (2008) Fullerene C60 films cross-linked with octane-1,8-dithiol: preparation, characterization and the use as template for chemical deposition of gold nanoparticles. J Nanosci Nanotechnol 8:3828

    Google Scholar 

  36. Dmitruk NL, Borkovskaya OY, Mamykin SV, Naumenko DO, Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Puente Lee I (2010) Optical and photoelectrical studies of gold nanoparticle-decorated C60 films. Thin Solid Films 518:1737

    Google Scholar 

  37. Dmitruk N, Borkovskaya O, Naumenko D, Berezovska N, Dmitruk I, Meza-Laguna V, Alvarez-Zauco E, Basiuk E (2009) Optical and photoluminescent properties of nanostructured hybrid films based on functional fullerenes and metal nanoparticles. Semicond Phys Quantum Electron Optoelectron 12:205

    Google Scholar 

  38. Dmitruk NL, Borkovskaya OY, Havrylenko TS, Naumenko DO, Petrik P, Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV (2010) Effect of chemical modification of thin C60 fullerene films on the fundamental absorption edge. Semicond Phys Quantum Electron Optoelectron 13:180

    Google Scholar 

  39. Ito O, D’Souza F (2012) Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17:5816

    Google Scholar 

  40. D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41:86

    Google Scholar 

  41. Basiuk VA, Contreras-Torres FF, Bassiouk M, Basiuk EV (2009) Interactions of porphyrins with low-dimensional carbon materials. J Comput Theor Nanosci 6:1383

    Google Scholar 

  42. Bassiouk M, Álvarez-Zauco E, Basiuk VA (2013) Adsorption of meso-tetraphenylporphines on thin films of C60 fullerene. Appl Surf Sci 275:374

    Google Scholar 

  43. Kolokoltsev Y, Amelines-Sarria O, T. Yu G, Basiuk VA (2010) Interaction of mesotetraphenylporphines with C60 fullerene: comparison of several density functional theory functionals implemented in DMol3 module. J Comput Theor Nanosci 7:1095

    Google Scholar 

  44. Amelines-Sarria O, Kolokoltsev Y, Basiuk VA (2010) Noncovalent 1:2 complex of mesotetraphenylporphine with C60 fullerene: a density functional theory study. J Comput Theor Nanosci 7:1996

    Google Scholar 

  45. Basiuk VA, Amelines-Sarria O, Kolokoltsev Y (2010) A density functional theory study of porphyrin−pyridine−fullerene triad ZnTPP·Py·C60. J Comput Theor Nanosci 7:2322

    Google Scholar 

  46. Basiuk VA, Kolokoltsev Y, Amelines-Sarria O (2011) Noncovalent interaction of mesotetraphenylporphine with C60 fullerene as studied by several DFT methods. J Nanosci Nanotechnol 11:5519

    Google Scholar 

  47. Basiuk VA, Henao-Holguín LV (2013) Effects of orbital cutoff in DMol3 DFT calculations: a case study of meso-tetraphenylporphine−C60 complex. J Comput Theor Nanosci 10:1266

    Google Scholar 

  48. Basiuk VA, Henao-Holguín LV (2014) Dispesion-corrected DFT calculations of meso- tetraphenylporphine−C60 complex by using DMol3 module. J Comput Theor Nanosci 11:1609

    Google Scholar 

  49. Basiuk EV, Ochoa-Olmos OE, De la Mora-Estrada LF (2011) Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants. J Nanosci Nanotechnol 11:3016

    Google Scholar 

  50. Ochoa-Olmos OE, Montero-Montoya R, Serrano-García L, Basiuk EV (2009) Genotoxic properties of nylon-6/MWNTs nanohybrid. J Nanosci Nanotechnol 9:4727

    Google Scholar 

  51. Basiuk VA, Basiuk EV, Shishkova S, Dubrovsky JG (2013) Systemic phytotoxic impact of as-prepared carbon nanotubes in long-term assays: a case study of Parodia ayopayana (Cactaceae). Sci Adv Mater 5:1337

    Google Scholar 

  52. Basiuk EV (2008) Solvent-free techniques for covalent chemical modification of carbon nanotubes (chapter 4). In: Basiuk VA, Basiuk EV (eds) Chemistry of carbon nanotubes, 2nd edn. American Scientific Publishers, Stevenson Ranch, CA, p 55

    Google Scholar 

  53. Khabashesku VN, Billups WE, Margrave JL (2002) Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res 35:1087

    Google Scholar 

  54. Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Side wall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett 3:331

    Google Scholar 

  55. Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H (2004) Fluorination of open- and closed-end single-walled carbon nanotubes. Phys Chem Chem Phys 6:1769

    Google Scholar 

  56. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188

    Google Scholar 

  57. Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2:1009

    Google Scholar 

  58. Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107

    Google Scholar 

  59. Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang X, Scuseria GE, Radloff C, Halas N (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313:445

    Google Scholar 

  60. Marcoux PR, Schreiber J, Batail P, Lefrant S, Renouard J, Jacob G, Albertini D, Mevellec JY (2002) A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys Chem Chem Phys 4:2278

    Google Scholar 

  61. Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL (1999) Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B 103:4318

    Google Scholar 

  62. Peng H, Gu Z, Yang J, Zimmerman JL, Willis PA, Bronikowski MJ, Smalley RE, Hauge RH, Margrave JL (2001) Fluorotubes as cathodes in lithium electrochemical cells. Nano Lett 1:625

    Google Scholar 

  63. Pehrsson PE, Zhao W, Baldwin JW, Song C, Liu J, Kooi S, Zheng B (2003) Thermal fluorination and annealing of single-wall carbon nanotubes. J Phys Chem B 107:5690

    Google Scholar 

  64. Zhao W, Song C, Zheng B, Liu J, Viswanathan T (2002) Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J Phys Chem B 106:293

    Google Scholar 

  65. An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park C-Y, Lee YH, Lee YS, Chung YS (2002) X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett 80:4235

    Google Scholar 

  66. Plank NOV, Jiang L, Cheung R (2003) Fluorination of carbon nanotubes in CF4 plasma. Appl Phys Lett 83:2426

    Google Scholar 

  67. Hamwi A, Alvergnat H, Bonnamy S, Béguin F (1997) Fluorination of carbon nanotubes. Carbon 35:723

    Google Scholar 

  68. Yudanov NF, Okotrub AV, Shubin YV, Yudanova LI, Bulusheva LG (2002) Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem Mater 14:1472

    Google Scholar 

  69. Hayashi T, Terrones M, Scheu C, Kim YA, Ruhle M, Nakajima T, Endo M (2002) NanoTeflons: structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett 2:491

    Google Scholar 

  70. Park S-J, Jeong H-J, Nah C (2004) A study of oxyfluorination of multi–walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A 385:13

    Google Scholar 

  71. Unger E, Liebau M, Duesberg GS, Graham AP, Kreupl F, Seidel R, Hoenlein W (2004) Fluorination of carbon nanotubes with xenon difluoride. Chem Phys Lett 399:280

    Google Scholar 

  72. Valentini L, Puglia D, Armentano I, Kenny JM (2005) Sidewall functionalization of single- walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chem Phys Lett 403:385

    Google Scholar 

  73. Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H (2005) Fluorination of double-walled carbon nanotubes. Chem Commun 15:2002

    Google Scholar 

  74. Ziegler KJ, Gu Z, Shaver J, Chen Z, Flor EL, Schmidt DJ, Chan C, Hauge RH, Smalley RE (2005) Cutting single-walled carbon nanotubes. Nanotechnology 16:S539

    Google Scholar 

  75. Wang Y-Q, Sherwood PMA (2004) Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater 16:5427

    Google Scholar 

  76. Valentini L, Armentano I, Mengoni F, Puglia D, Pennelli G, Kenny JM (2005) Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. J Appl Phys 97:114320–114321

    Google Scholar 

  77. Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC (2005) Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J Appl Phys 98:074308–1

    Google Scholar 

  78. Zhang W, Bonnet P, Dubois M, Ewels CP, Guerin K, Petit E, Mevellec JY, Vidal L, Ivanov DA, Hamwi A (2012) Comparative study of SWCNT fluorination by atomic and molecular fluorine. Chem Mater 24:1744

    Google Scholar 

  79. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156

    Google Scholar 

  80. Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem Eur J 10:813

    Google Scholar 

  81. Dyke CA, Stewart MP, Maya F, Tour JM (2004) Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 1:155

    Google Scholar 

  82. Price BK, Hudson JL, Tour JM (2005) Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J Am Chem Soc 127:14867

    Google Scholar 

  83. Chen XH, Wang HF, Zhong WB, Feng T, Yang XG, Chen JH (2008) A scalable route to highly functionalized multi-walled carbon nanotubes on a large scale. Macromol Chem Phys 209:846

    Google Scholar 

  84. Sadowska K, Roberts KP, Wiser R, Biernat JF, Jablonowska E, Bilewicz R (2009) Synthesis, characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 47:1501

    Google Scholar 

  85. Rana S, Cho JW, Kumar I (2010) Synthesis and characterization of polyurethane-grafted singlewalled carbon nanotubes via click chemistry. J Nanosci Nanotechnol 10:5700

    Google Scholar 

  86. Brunetti FG, Herrero MA, Munoz JDM, Giordani S, Diaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato M, Vazquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580

    Google Scholar 

  87. Paiva MC, Simon F, Novais RM, Ferreira T, Proenca MF, Xu W, Besenbacher F (2010) Controlled functionalization of carbon nanotubes by a solvent-free multicomponent approach. ACS Nano 4:7379

    Google Scholar 

  88. Grassi G, Scala A, Piperno A, Iannazzo D, Lanza M, Milone C, Pistone A, Galvagno S (2012) A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound. Chem Commun 48:6836

    Google Scholar 

  89. Tagliapietra S, Cravotto G, Gaudino EC, Visentin S, Mussi V (2012) Functionalization of single-walled carbon nanotubes through 1,3-cycloaddition of carbonyl ylides under microwave irradiation. Synlett 10:1459

    Google Scholar 

  90. Bayazit MK, Coleman KS (2012) Probing the selectivity of azomethine imine cycloaddition to single-walled carbon nanotubes by resonance Raman spectroscopy. Chem Asian J 7:2925

    Google Scholar 

  91. Nayak RR, Lee KY, Shanrnugharaj AM, Ryu SH (2007) Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. Eur Polym J 43:4916

    Google Scholar 

  92. Menzel R, Tran MQ, Menner A, Kay CWM, Bismarck A, Shaffer MSP (2010) A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chem Sci 1:603

    Google Scholar 

  93. Tian R, Wang XB, Li MJ, Hu HT, Chen R, Liu FM, Zheng H, Wan L (2008) An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl Surf Sci 255:3294

    Google Scholar 

  94. Ye YM, Mao Y, Wang F, Lu HB, Qu LT, Dai LM (2011) Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings. J Mater Chem 21:837

    Google Scholar 

  95. Yuvaraj H, Jeong YT, Lee WK, Lim KT (2009) Synthesis of MWNT/PEDOT composites for the application of organic light emitting diodes. Mol Cryst Liq Cryst 514:366

    Google Scholar 

  96. Yang YK, Yu LJ, Peng RG, Huang YL, He CE, Liu HY, Wang XB, Xie XL, Mai YW (2012) Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing. Nanotechnology 23:225701

    Google Scholar 

  97. Suri A, Chakraborty AK, Coleman KS (2008) A facile, solvent-free, noncovalent, and nondisruptive route to functionalize single-wall carbon nanotubes using tertiary phosphines. Chem Mater 20:1705

    Google Scholar 

  98. Németh Z, Réti B, Dieker C, Akos K, Alexander DTL, Seo JW, Forró L, Hernadi K (2010) Preparation of homogeneous titania coatings on the surface of MWNTs. Phys Status Sol B 247:2683

    Google Scholar 

  99. Németh Z, Dieker C, Kukovecz A, Alexander D, Forró L, Seo JW, Hernadi K (2011) Preparation of homogeneous titania coating on the surface of MWNT. Compos Sci Tech 71:87

    Google Scholar 

  100. Lin Y, Baggett DW, Kim JW, Siochi EJ, Connell JW (2011) Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating. ACS Appl Mater Interfaces 3:1652

    Google Scholar 

  101. Xu ZW, Li Z, Tan XH, Holt CMB, Zhang L, Amirkhiz BS, Mitlin D (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753

    Google Scholar 

  102. Ni XJ, Zhang BS, Li C, Pang M, Su DS, Williams CT, Liang CH (2012) Microwave- assisted green synthesis of uniform ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation. Catal Commun 24:65

    Google Scholar 

  103. Khare BN, Wilhite P, Quinn RC, Chen B, Schingler RH, Tran B, Imanaka H, So CR, Bauschlicher CW Jr, Meyyappan M (2004) Functionalization of carbon nanotubes by ammonia glow-discharge: experiments and modeling. J Phys Chem B 108:8166

    Google Scholar 

  104. Khare B, Wilhite P, Tran B, Teixeira E, Fresquez K, Nna Mvondo D, Bauschlicher C Jr, Meyyappan M (2005) Functionalization of carbon nanotubes via nitrogen glow discharge. J Phys Chem B 109:23466

    Google Scholar 

  105. Chen Q, Dai L, Gao M, Huang S, Mau A (2001) Plasma activation of carbon nanotubes for chemical modification. J Phys Chem B 105:618

    Google Scholar 

  106. Bystrzejewski M, Rummeli MH, Gemming T, Pichler T, Huczko A, Lange H (2009) Functionalizing single-wall carbon nanotubes in hollow cathode glow discharges. Plasma Chem Plasma Process 29:79

    Google Scholar 

  107. Kónya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koós AA, Osváth Z, Kocsonya A, Biró LP, Kiricsi I (2002) Large scale production of short functionalized carbon nanotubes. Chem Phys Lett 360:429

    Google Scholar 

  108. Barthos R, Méhn D, Demortier A, Pierard N, Morciaux Y, Demortier G, Fonseca A, Nagy JB (2005) Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon 43:321

    Google Scholar 

  109. Li X, Liu L, Qin Y, Wu W, Guo Z-X, Dai L, Zhu D (2003) C60 modified single-walled carbon nanotubes. Chem Phys Lett 377:32

    Google Scholar 

  110. Pan H, Liu L, Guo ZX, Dai L, Zhang F, Zhu D, Czerw R, Carroll DL (2003) Carbon nanotubols from mechanochemical reaction. Nano Lett 3:29

    Google Scholar 

  111. Schulte K, Yan C, Ahola-Tuomi M, Stróżecka A, Moriarty PJ, Khlobystov AN (2008) Encapsulation of cobalt phthalocyanine molecules in carbon nanotubes. J Phys Conf Ser 100:012017

    Google Scholar 

  112. Schulte K, Swarbrick JC, Smith NA, Bondino F, Magnano E, Khlobystov AN (2007) Assembly of cobalt phthalocyanine stacks inside carbon nanotubes. Adv Mater 19:3312

    Google Scholar 

  113. Basiuk VA, Henao-Holguín LV, Álvarez-Zauco E, Bassiouk M, Basiuk EV (2013) Gas- phase noncovalent functionalization of carbon nanotubes with a Ni(II) tetraaza[14]annulene complex. Appl Surf Sci 270:634

    Google Scholar 

  114. Bassiouk M, Basiuk VA, Basiuk EV, Álvarez-Zauco E, Martínez-Herrera M, Rojas- Aguilar A, Puente-Lee I (2013) Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl Surf Sci 275:168

    Google Scholar 

  115. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259

    Google Scholar 

  116. Rodríguez-Galván A, Contreras-Torres FF, Basiuk EV, Alvarez-Zauco E, Heredia A, Basiuk VA (2011) Aggregation of human serum albumin on graphite and single-walled carbon nanotubes as studied by scanning probe microscopies. J Nanosci Nanotechnol 11:5491

    Google Scholar 

  117. Rodríguez-Galván A, Contreras-Torres FF, Basiuk EV, Heredia A, Basiuk VA (2013) Deposition of silver nanoparticles onto human serum albumin-functionalized multi-walled carbon nanotubes. Can J Chem Eng 91:264

    Google Scholar 

  118. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952

    Google Scholar 

  119. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853

    Google Scholar 

  120. Basiuk VA, Basiuk (Golovataya-Dzhymbeeva) EV (2004) Chemical derivatization of carbon nanotube tips. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, 1st edn. American Scientific Publishers, Stevenson Ranch CA, p 761

    Google Scholar 

  121. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95

    Google Scholar 

  122. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834

    Google Scholar 

  123. Lian Y, Maeda Y, Wakahara T, Akasaka T, Kazaoui S, Minami N, Shimizu T, Choi N, Tokumoto H (2004) Nondestructive and high-recovery-yield purification of single-walled carbon nanotubes by chemical functionalization. J Phys Chem B 108:8848

    Google Scholar 

  124. Lian Y, Maeda Y, Wakahara T, Nakahodo T, Akasaka T, Kazaoui S, Minami N, Shimizu T, Tokumoto H (2005) Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes. Carbon 43:2750

    Google Scholar 

  125. Jia H, Lian Y, Ishitsuka MO, Nakahodo T, Maeda Y, Tsuchiya T, Wakahara T, Akasaka T (2005) Centrifugal purification of chemically modified single-walled carbon nanotubes. Sci Technol Adv Mater 6:571

    Google Scholar 

  126. Sun YP, Huang W, Lin Y, Fu K, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13:2864

    Google Scholar 

  127. Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP (2001) Defunctionalization of functionalized carbon nanotubes. Nano Lett 1:439

    Google Scholar 

  128. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105:2525

    Google Scholar 

  129. Lin Y, Rao AM, Sadanadan B, Kenik E, Sun YP (2002) Functionalizing multiple-walled carbon nanotubes with aminopolymers. J Phys Chem B 106:1294

    Google Scholar 

  130. Czerw R, Guo Z, Ajayan PM, Sun YP, Carroll DL (2001) Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett 1:423

    Google Scholar 

  131. Riggs JE, Guo Z, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879

    Google Scholar 

  132. Basiuk VA, Chuiko AA (1990) Gas-phase synthesis, properties and some applications of acylamide stationary phases for high-performance liquid chromatography. J Chromatogr 521:29

    Google Scholar 

  133. Basyuk VA (1991) Preparation and properties of functionalized sorbents based on bromobutyliminopropyl silica gel for high-performance liquid chromatography. J Anal Chem USSR-Engl Tr 46:401

    Google Scholar 

  134. Basiuk VA, Khil’chevskaya EG (1991) Gas-phase acylation of aminopropyl silica gel in the synthesis of some chemically bonded silica materials for analytical applications. Anal Chim Acta 255:197

    Google Scholar 

  135. Basiuk VA, Chuiko AA (1993) Selectivity of bonded stationary phases containing uracil derivatives for liquid chromatography of nucleic acid components. J Chromatogr Sci 31:120

    Google Scholar 

  136. Basiuk EV, Basiuk VA, Bañuelos JG, Saniger-Blesa J-M, Pokrovskiy VA, Gromovoy TY, Mischanchuk AV, Mischanchuk BG (2002) Interaction of oxidized single-walled carbon nanotubes with vaporous aliphatic amines. J Phys Chem B 106:1588

    Google Scholar 

  137. Basiuk VA, Kobayashi K, Kaneko T, Negishi Y, Basiuk EV, Saniger-Blesa J-M (2002) Irradiation of single-walled carbon nanotubes with high-energy protons. Nano Lett 2:789

    Google Scholar 

  138. Hadjiev VG, Lagoudas DC, Oh E-S, Thakre P, Davis D, Files BS, Yowell L, Arepalli S, Bahr JL, Tour JM (2006) Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy. Compos Sci Tech 66(128)

    Google Scholar 

  139. Basiuk VA (2003) ONIOM studies of chemical reactions on carbon nanotube tips: effects of the lower theoretical level and mutual orientation of the reactants. J Phys Chem B 107:8890

    Google Scholar 

  140. Basiuk VA, Salvador-Morales C, Basiuk EV, Jacobs RMJ, Ward M, Chu BT, Sim RB, Green MLH (2006) “Green” derivatization of carbon nanotubes with nylon 6 and L-alanine. J Mater Chem 16:4420

    Google Scholar 

  141. Alvarez-Zauco E, Basiuk VA, Acosta-Najarro D, Flores-Morales C, Puente-Lee I, Bassiouk M, Gromovoy TY, Mischanchuk BG, Basiuk EV (2010) Microwave irradiation of pristine multi-walled carbon nanotubes in vacuum. J Nanosci Nanotechnol 10:448

    Google Scholar 

  142. Basiuk EV, Monroy-Peláez M, Puente-Lee I, Basiuk VA (2004) Direct solvent-free amination of closed-cap carbon nanotubes: a link to fullerene chemistry. Nano Lett 4:863

    Google Scholar 

  143. Basiuk EV, Gromovoy TY, Datsyuk A, Palyanytsya BB, Pokrovskiy VA, Basiuk VA (2005) Solvent-free derivatization of pristine multi-walled carbon nanotubes with amines. J Nanosci Nanotechnol 5:984

    Google Scholar 

  144. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single wall carbon nanotubes. J Am Chem Soc 125:3370

    Google Scholar 

  145. Lin T, Zhang W-D, Huang J, He C (2005) A DFT study of the amination of fullerenes and carbon nanotubes: reactivity and curvature. J Phys Chem B 109:13755

    Google Scholar 

  146. Sato R, Basiuk EV, Saniger-Blesa JM (2006) Application of principal component analysis to discriminate the Raman spectra of functionalized multi-walled carbon nanotubes. J Raman Spectrosc 37:1302

    Google Scholar 

  147. Basiuk (Golovataya-Dzhymbeeva) EV, Ochoa-Olmos O, Contreras-Torres FF, Meza-Laguna V, Alvarez-Zauco E, Puente-Lee I, Basiuk VA (2011) “Green” functionalization of pristine multi-walled carbon nanotubes with long-chain aliphatic amines. J Nanosci Nanotechnol 11:5546

    Google Scholar 

  148. Contreras-Torres FF, Ochoa-Olmos OE, Basiuk EV (2009) Amine-functionalized multi- walled carbon nanotubes: an atomic force microscopy study. J Scan Probe Microsc 4:100

    Google Scholar 

  149. Basiuk EV, Basiuk VA, Meza-Laguna V, Contreras-Torres FF, Martínez M, Rojas-Aguilar A, Salerno M, Zavala G, Falqui A, Brescia R (2012) Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: looking for cross-linking effects. Appl Surf Sci 259:465

    Google Scholar 

  150. Basiuk EV, Solis-González OA, Alvarez-Zauco E, Puente-Lee I, Basiuk VA (2009) Nanohybrids of nylon 6 with multi-walled carbon nanotubes: solvent-free polymerization of ε- caprolactam under variable experimental conditions. J Nanosci Nanotechnol 9:3313

    Google Scholar 

  151. Salvador-Morales C, Basiuk EV, Basiuk VA, Green MLH, Sim RB (2008) Effects of covalent functionalisation on the biocompatibility characteristics of multi-walled carbon nanotubes. J Nanosci Nanotechnol 8:2347

    Google Scholar 

  152. Basiuk EV, Puente-Lee I, Claudio-Sánchez J-L, Basiuk VA (2006) Solvent-free derivatization of pristine multi-walled carbon nanotubes with dithiols. Mater Lett 60:3741

    Google Scholar 

  153. Zanella R, Basiuk EV, Santiago P, Basiuk VA, Mireles E, Puente-Lee I, Saniger JM (2005) Deposition of gold nanoparticles onto thiol-functionalized multi-walled carbon nanotubes. J Phys Chem B 109:16290

    Google Scholar 

  154. Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663

    Google Scholar 

  155. Shakun A, Vuorinen J, Hoikkanen M, Poikelispää M, Das A (2014) Hard nanodiamonds in soft rubbers: past, present and future–a review. Compos Part A 64:49

    Google Scholar 

  156. Yakovlev RY, Solomatin AS, Leonidov NB, Kulakova II, Lisichkin GV (2014) Detonation diamond-a perspective carrier for drug delivery systems. Russ J Gen Chem 84:379

    Google Scholar 

  157. Moosa B, Fhayli K, Li S, Julfakyan K, Ezzeddine A, Khashab NM (2014) Applications of nanodiamonds in drug delivery and catalysis. J Nanosci Nanotechnol 14:332

    Google Scholar 

  158. Basiuk EV, Santamaría-Bonfil A, Meza-Laguna V, Gromovoy TY, Alvares-Zauco E, Contreras-Torres FF, Rizo J, Zavala G, Basiuk VA (2013) Solvent-free covalent functionalization of nanodiamond with amines. Appl Surf Sci 275:324

    Google Scholar 

  159. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465

    Google Scholar 

  160. Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J (2014) Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 119:163

    Google Scholar 

  161. Gollavelli G, Chang C-C, Ling Y-C (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462

    Google Scholar 

  162. Sharma P, Darabdhara G, Reddy TM, Borah A, Bezboruah P, Gogoi P, Hussain N, Sengupta P, Das MR (2013) Synthesis, characterization and catalytic application of Au NPs-reduced graphene oxide composites material: an eco-friendly approach. Catal Commun 40:139

    Google Scholar 

  163. Marquardt D, Vollmer C, Thomann R, Steurer P, Mülhaupt R, Redel E, Janiak C (2011) The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon 49:1326

    Google Scholar 

  164. Lin Y, Watson KA, Kim J-W, Baggett DW, Working DC, Connell JW (2013) Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale 5:7814

    Google Scholar 

  165. Castelaín M, Shuttleworth PS, Marco C, Ellis G, Salavagione HJ (2013) Comparative study of the covalent diazotization of graphene and carbon nanotubes using thermogravimetric and spectroscopic techniques. Phys Chem Chem Phys 15:16806

    Google Scholar 

  166. Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481

    Google Scholar 

  167. Du Z-Z, Ai W, Zhao J-F, Xie L-H, Huang W (2014) Synthesis and characterization of amphiphilic graphene. Sci China Technol Sci 57:244

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Council of Science and Technology of Mexico (grant CONACYT- 127299) and from the National Autonomous University of Mexico (grants DGAPA-IN100815 and IN101313) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Basiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basiuk, E.V., Basiuk, V.A. (2015). Solvent-Free Functionalization of Carbon Nanomaterials. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics