Skip to main content

Green Synthesis: Properties and Potential Applications in Nanomaterials and Biomass Nanocomposites

  • Chapter
Green Processes for Nanotechnology

Abstract

Development of green processes for nanotechnology is of great importance for broadening and improving the industrial applications of nanomaterials and nanocomposites. This chapter focuses on the recent developments in green synthesis, its properties, and its potential applications in nanomaterials and biomass nanocomposites. Among the various green processes for nanotechnology, we pay more attention to the microwave-assisted method, which has been accepted as a promising green methodology in the synthesis of nanomaterials and nanocomposites. Undoubtedly, the microwave-assisted method conforms to the principles of green chemistry such as “minimize the use of solvents and other auxiliary substances” and “minimize energy use” due to its characteristics of reduced energy consumption, reduced pollution, shorter reaction time, and higher product yield.

In recent years, rapid progress has been made in the preparation of nanomaterials and nanocomposites by a microwave-assisted method. In this chapter, the green microwave-assisted synthesis of various nanomaterials including metal nanomaterials, metal oxides nanomaterials, metal chalcogenides nanomaterials, bio-nanomaterials, nanocomposites, and biomass nanocomposites is reviewed. Some typical examples by our research group and by other groups are introduced, which would favor the understanding of the green microwave processes for nanotechnology. Finally, we propose the future perspectives of this green methodology for the fabrication of nanomaterials and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam D (2003) Microwave chemistry: out of the kitchen. Nature 421:571–572

    Article  Google Scholar 

  2. Ma MG, Zhu JF, Zhu YJ, Sun RC (2014) The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials. Chem Asian J 9:2378–2391

    Article  Google Scholar 

  3. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555

    Article  Google Scholar 

  4. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal–carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Chem Eur J 16:3849–3858

    Article  Google Scholar 

  5. Pradhan M, Sarkar S, Sinha AK, Basu M, Pal T (2010) High-yield synthesis of 1D Rh nanostructures from surfactant mediated reductive pathway and their shape transformation. J Phys Chem C 114:16129–16142

    Article  Google Scholar 

  6. Liu JW, Chen F, Zhang M, Qi H, Zhang CL, Yu SH (2010) Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 26:11372–11377

    Article  Google Scholar 

  7. Horikoshi S, Abe H, Torigoe K, Abe M, Serpone N (2010) Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Nanoscale 2:1441–1447

    Article  Google Scholar 

  8. Liu SH, Lu F, Zhu JJ (2011) Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. Chem Commun 47:2661–2663

    Article  Google Scholar 

  9. Li RQ, Wang CL, Bo F, Wang ZY, Shao HB, Xu SH, Cui YP (2012) Microwave-assisted synthesis of fluorescent Ag nanoclusters in aqueous solution. ChemPhysChem 13:2097–2101

    Article  Google Scholar 

  10. Uppal MA, Kafizas A, Ewing MB, Parkin IP (2010) The effect of initiation method on the size, monodispersity and shape of gold nanoparticles formed by the Turkevich method. New J Chem 34:2906–2914

    Article  Google Scholar 

  11. Yan L, Cai YQ, Zheng BZ, Yuan HY, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005

    Article  Google Scholar 

  12. Yue Y, Liu TY, Li HW, Liu ZY, Wu YQ (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254

    Article  Google Scholar 

  13. Shang L, Yang LX, Stockmar F, Popescu R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2012) Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 4:4155–4160

    Article  Google Scholar 

  14. Kou JH, Varma RS (2012) Beet juice utilization: expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv 2:10283–10290

    Article  Google Scholar 

  15. Liu YQ, Zhang M, Wang FX, Pan GB (2012) Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity. RSC Adv 2:11235–11237

    Article  Google Scholar 

  16. Hu B, Wu LH, Liu SJ, Yao HB, Shi HY, Li GP, Yu SH (2010) Microwave-assisted synthesis of silver indium tungsten oxide mesocrystals and their selective photocatalytic properties. Chem Commun 46:2277–2279

    Article  Google Scholar 

  17. Xiao LS, Shen H, von Hagen R, Pan J, Belkoura L, Mathur S (2010) Microwave assisted fast and facile synthesis of SnO2 quantum dots and their printing applications. Chem Commun 46:6509–6511

    Article  Google Scholar 

  18. Huang H, Sithambaram S, Chen CH, Kithongo CK, Xu LP, Iyer A, Garces HF, Suib SL (2010) Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies. Chem Mater 22:3664–3669

    Article  Google Scholar 

  19. Volanti DP, Orlandi MO, Andrés J, Longo E (2010) Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 12:1696–1699

    Article  Google Scholar 

  20. Zhang DQ, Li GS, Wang F, Yu JC (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12:1759–1763

    Article  Google Scholar 

  21. Conrad F, Zhou Y, Yulikov M, Hametner K, Weyeneth S, Jeschke G, Gunther D, Grunwaldt JD, Patzke GR (2010) Microwave-hydrothermal synthesis of nanostructured zinc-copper gallates. Eur J Inorg Chem 2010:2036–2043

    Article  Google Scholar 

  22. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS (2010) Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem 20:1683–1690

    Article  Google Scholar 

  23. Qiu G, Dharmarathna S, Genuino H, Zhang Y, Huang H, Suib SL (2011) Facile microwave-refluxing synthesis and catalytic properties of vanadium pentoxide nanomaterials. ACS Catal 1:1702–1709

    Article  Google Scholar 

  24. Wu LH, Yao HB, Hu B, Yu SH (2011) Unique lamellar sodium/potassium iron oxide nanosheets: facile microwave-assisted synthesis and magnetic and electrochemical properties. Chem Mater 23:3946–3952

    Article  Google Scholar 

  25. Cao XF, Zhang L, Chen XT, Xue ZL (2011) Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties. CrystEngComm 13:306–311

    Article  Google Scholar 

  26. Zhang L, Cao XF, Chen XT, Xue ZL (2011) Fast preparation and growth mechanism of erythrocyte-like Cd2Ge2O6 superstructures via a microwave-hydrothermal process. CrystEngComm 13:2464–2471

    Article  Google Scholar 

  27. Li XY, Liu DP, Song SY, Wang X, Ge X, Zhang HJ (2011) Rhombic dodecahedral Fe3O4: ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties. CrystEngComm 13:6017–6020

    Article  Google Scholar 

  28. Yang YL, Hu CC, Hua CC (2011) Preparation and characterization of nanocrystalline TixSn1-xO2 solid solutions via a microwave-assisted hydrothermal synthesis process. CrystEngComm 13:5638–5641

    Article  Google Scholar 

  29. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J Phys Chem C 115:25543–25556

    Article  Google Scholar 

  30. Qiu GH, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115:19626–19631

    Article  Google Scholar 

  31. Milosevic I, Jouni H, David C, Warmont F, Bonnin D, Motte L (2011) Facile microwave process in water for the fabrication of magnetic nanorods. J Phys Chem C 115:18999–19004

    Article  Google Scholar 

  32. Chou SL, Wang JZ, Liu HK, Dou SX (2011) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220–16227

    Article  Google Scholar 

  33. Chen M, Wang ZH, Han DM, Gu FB, Guo GS (2011) Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J Phys Chem C 115:12763–12773

    Article  Google Scholar 

  34. Truong TT, Liu YZ, Ren Y, Trahey L, Sun YG (2012) Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries. ACS Nano 6:8067–8077

    Article  Google Scholar 

  35. Araújo VD, Avansi W, de Carvalho HB, Moreira ML, Longo E, Ribeiro C, Bernardi MIB (2012) CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. CrystEngComm 14:1150–1154

    Article  Google Scholar 

  36. Almeida MAP, Cavalcante LS, Morilla-Santos C, Dalmaschio CJ, Rajagopal S, Li MS, Longo E (2012) Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm 14:7127–7132

    Article  Google Scholar 

  37. Wang QM, Zhang ZY, Zheng YH, Cai WS, Yu YF (2012) Multiple irradiation triggered the formation of luminescent LaVO4: Ln3+ nanorods and in cellulose gels. CrystEngComm 14:4786–4793

    Article  Google Scholar 

  38. Zhang JC, Wang W, Li BX, Zhang XH, Zhao XD, Liu XY, Zhao M (2012) Self-assembled NaY(WO4)2 hierarchical dumbbells: microwave-assisted hydrothermal synthesis and their tunable upconversion luminescent properties. Eur J Inorg Chem 2012:2220–2225

    Article  Google Scholar 

  39. Shi JY, Liu GJ, Wang N, Li C (2012) Microwave-assisted hydrothermal synthesis of perovskite NaTaO3 nanocrystals and their photocatalytic properties. J Mater Chem 22:18808–18813

    Article  Google Scholar 

  40. Liang SJ, Zhu SY, Chen Y, Wu WM, Wang XC, Wu L (2012) Rapid template-free synthesis and photocatalytic performance of visible light-activated SnNb2O6 nanosheets. J Mater Chem 22:2670–2678

    Article  Google Scholar 

  41. Lehnen T, Zopes D, Mathur S (2012) Phase-selective microwave synthesis and inkjet printing applications of Zn2SnO4 (ZTO) quantum dots. J Mater Chem 22:17732–17736

    Article  Google Scholar 

  42. Qiu GH, Dharmarathna S, Zhang YS, Opembe N, Huang H, Suib SL (2012) Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J Phys Chem C 116:468–477

    Article  Google Scholar 

  43. Moreira ML, Longo VM, Avansi W Jr, Ferrer MM, Andrés J, Mastelaro VR, Varela JA, Longo É (2012) Quantum mechanics insight into the microwave nucleation of SrTiO3 nanospheres. J Phys Chem C 116:24792–24808

    Article  Google Scholar 

  44. Su YG, Zhu BL, Guan K, Gao SS, Lv L, Du CF, Peng LM, Hou LC, Wang XJ (2012) Particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties. J Phys Chem C 116:18508–18517

    Article  Google Scholar 

  45. Conrad F, Massue C, Küehl S, Kunkes E, Girgsdies F, Kasatkin I, Zhang BS, Friedrich M, Luo Y, Armbrüester M, Patzke GR, Behrens M (2012) Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Nanoscale 4:2018–2028

    Article  Google Scholar 

  46. Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC (2013) A highly efficient TiO2−xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl Mater Interfaces 5:1663–1672

    Article  Google Scholar 

  47. Manseki K, Kondo Y, Ban T, Sugiura T, Yoshida T (2013) Size-controlled synthesis of anisotropic TiO2 single nanocrystals using microwave irradiation and their application for dye-sensitized solar cells. Dalton Trans 42:3295–3299

    Article  Google Scholar 

  48. Al Juhaiman L, Scoles L, Kingston D, Patarachao B, Wang DS, Bensebaa F (2010) Green synthesis of tunable Cu(In1-x Ga x )Se2 nanoparticles using non-organic solvents. Green Chem 12:1248–1252

    Article  Google Scholar 

  49. Apte SK, Garaje SN, Bolade RD, Ambekar JD, Kulkarni MV, Naik SD, Gosavi SW, Baeg JO, Kale BB (2010) Hierarchical nanostructures of CdIn2S4 via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts. J Mater Chem 20:6095–6102

    Article  Google Scholar 

  50. Gallagher SA, Moloney MP, Wojdyla M, Quinn SJ, Kelly JM, Gun’ko YK (2010) Synthesis and spectroscopic studies of chiral CdSe quantum dots. J Mater Chem 20:8350–8355

    Article  Google Scholar 

  51. Han H, Di Francesco G, Maye MM (2010) Size control and photophysical properties of quantum dots prepared via a novel tunable hydrothermal route. J Phys Chem C 114:19270–19277

    Article  Google Scholar 

  52. Hu Y, Liu Y, Qian HS, Li ZQ, Chen JF (2010) Coating colloidal carbon spheres with CdS nanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir 26:18570–18575

    Article  Google Scholar 

  53. Guo X, Wang CF, Fang Y, Chen L, Chen S (2011) Fast synthesis of versatile nanocrystal-embedded hydrogels toward the sensing of heavy metal ions and organoamines. J Mater Chem 21:1124–1129

    Article  Google Scholar 

  54. Hayakawa Y, Nonoguchi Y, Wu HP, Diau EWG, Nakashima T, Kawai T (2011) Rapid preparation of highly luminescent CdTe nanocrystals in an ionic liquid via a microwave-assisted process. J Mater Chem 21:8849–8853

    Article  Google Scholar 

  55. Du J, Li XL, Wang SJ, Wu YZ, Hao XP, Xu CW, Zhao X (2012) Microwave-assisted synthesis of highly luminescent glutathione-capped Zn1-xCdxTe alloyed quantum dots with excellent biocompatibility. J Mater Chem 22:11390–11395

    Article  Google Scholar 

  56. Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F (2013) Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987

    Article  Google Scholar 

  57. Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341

    Article  Google Scholar 

  58. Zhao XY, Zhu YJ, Chen F, Lu BQ, Wu J (2013) Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release. CrystEngComm 15:206–212

    Article  Google Scholar 

  59. Escudero A, Calvo ME, Rivera-Fernández S, de la Fuente JM, Ocaña M (2013) Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir 29:1985–1994

    Article  Google Scholar 

  60. Zhu D, Jiang XX, Zhao C, Sun XL, Zhang JR, Zhu JJ (2010) Green synthesis and potential application of low-toxic Mn: ZnSe/ZnS core/shell luminescent nanocrystals. Chem Commun 46:5226–5228

    Article  Google Scholar 

  61. Zhang H, Yin YJ, Hu YJ, Li CY, Wu P, Wei SH, Cai CX (2010) Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J Phys Chem C 114:11861–11867

    Article  Google Scholar 

  62. Tang SC, Vongehr S, Meng XK (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  Google Scholar 

  63. Zhu XJ, Zhu YW, Murali S, Stollers MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  Google Scholar 

  64. Sun CL, Chang CT, Lee HH, Zhou JG, Wang J, Sham TK, Pong WF (2011) Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5:7788–7795

    Article  Google Scholar 

  65. Liu XJ, Pan LK, Lv T, Zhu G, Sun Z, Sun CQ (2011) Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem Commun 47:11984–11986

    Article  Google Scholar 

  66. Hu Y, Qian H, Liu Y, Du G, Zhang F, Wang L, Hu X (2011) A microwave-assisted rapid route to synthesize ZnO/ZnS core-shell nanostructures via controllable surface sulfidation of ZnO nanorods. CrystEngComm 13:3438–3443

    Article  Google Scholar 

  67. Zhong C, Wang JZ, Chen ZX, Liu HK (2011) SnO2-raphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J Phys Chem C 115:25115–25120

    Article  Google Scholar 

  68. Belousov OV, Belousova NV, Sirotina AV, Solovyov LA, Zhyzhaev AM, Zharkov SM, Mikhlin YL (2011) Formation of bimetallic Au-Pd and Au-Pt nanoparticles under hydrothermal conditions and microwave irradiation. Langmuir 27:11697–11703

    Article  Google Scholar 

  69. Liu XJ, Pan LK, Lv T, Zhu G, Lu T, Sun Z, Sun CQ (2011) Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv 1:1245–1249

    Article  Google Scholar 

  70. Wong RM, Gilbert DA, Liu K, Louie AY (2012) Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6:3461–3467

    Article  Google Scholar 

  71. Shen YY, Li LL, Lu Q, Ji J, Fei R, Zhang JR, Abdel-Halim ES, Zhu JJ (2012) Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu(II). Chem Commun 48:2222–2224

    Article  Google Scholar 

  72. Chen W, Ruan H, Hu Y, Li DZ, Chen ZX, Xian JJ, Chen J, Fu XZ, Shao Y, Zheng Y (2012) One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. CrystEngComm 14:6295–6305

    Article  Google Scholar 

  73. Kundu P, Singhania N, Madras G, Ravishankar N (2012) ZnO-Au nanohybrids by rapid microwave-assisted synthesis for CO oxidation. Dalton Trans 41:8762–8766

    Article  Google Scholar 

  74. Zhan HJ, Zhou PJ, He ZY, Tian Y (2012) Microwave-assisted aqueous synthesis of small-sized, highly luminescent CdSeS/ZnS core/shell quantum dots for live cell imaging. Eur J Inorg Chem 2012:2487–2493

    Article  Google Scholar 

  75. Yang WL, Liu Y, Hu Y, Zhou MJ, Qian HS (2012) Microwave-assisted synthesis of porous CdO-CdS core-shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI). J Mater Chem 22:13895–13898

    Article  Google Scholar 

  76. Shi Y, Chou SL, Wang JZ, Wexler D, Li HJ, Liu HK, Wu YP (2012) Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J Mater Chem 22:16465–16470

    Article  Google Scholar 

  77. Geng J, Song GH, Jia XD, Cheng FF, Zhu JJ (2012) Fast one-step synthesis of biocompatible ZnO/Au nanocomposites with hollow doughnut-like and other controlled morphologies. J Phys Chem C 116:4517–4525

    Article  Google Scholar 

  78. Cho S, Jang JW, Lee JS, Lee KH (2012) Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. Nanoscale 4:2066–2071

    Article  Google Scholar 

  79. Chen TQ, Pan LK, Liu XJ, Yu K, Sun Z (2012) One-step synthesis of SnO2-reduced graphene oxide-carbon nanotube composites via microwave assistance for lithium ion batteries. RSC Adv 2:11719–11724

    Article  Google Scholar 

  80. Jia N, Li SM, Zhu JF, Ma MG, Xu F, Wang B, Sun RC (2010) Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH-urea aqueous solution. Mater Lett 64:2223–2225

    Article  Google Scholar 

  81. Ma MG, Jia N, Li SM, Sun RC (2011) Nanocomposites of cellulose/carbonated hydroxyapatite by microwave-assisted fabrication in ionic liquid: characterization and thermal stability. Iran Polym J 20:413–421

    Google Scholar 

  82. Jia N, Li SM, Ma MG, Sun RC (2012) Rapid microwave-assisted fabrication of cellulose/F-substituted hydroxyapatite nanocomposites using green ionic liquids as additive. Mater Lett 68:44–46

    Article  Google Scholar 

  83. Ma MG, Fu LH, Sun RC, Jia N (2012) Compare study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types. Carbohydr Polym 90:309–315

    Article  Google Scholar 

  84. Ma MG, Dong YY, Fu LH, Li SM, Sun RC (2013) Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity. Carbohydr Polym 92:1669–1676

    Article  Google Scholar 

  85. Ma MG, Deng F, Yao K, Tian CH (2014) Microwave-assisted synthesis and characterization of CaCO3 particles-filled wood powder nanocomposites. Bioresources 9:3909–3918

    Google Scholar 

  86. Jia N, Li SM, Ma MG, Sun RC, Zhu L (2011) Green microwave-assisted synthesis of cellulose/calcium silicate nanocomposites in ionic liquids and recycled ionic liquids. Carbohydr Res 346:2970–2974

    Article  Google Scholar 

  87. Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    Article  Google Scholar 

  88. Dong YY, He J, Sun SL, Ma MG, Fu LH, Sun RC (2013) Environmentally-friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X = Cl, Br). Carbohydr Polym 98:168–173

    Article  Google Scholar 

  89. Ma MG, Qing SJ, Li SM, Zhu JF, Fu LH, Sun RC (2013) Microwave synthesis of cellulose/CuO nanocomposites in ionic liquids and its thermal transformation to CuO. Carbohydr Polym 91:162–168

    Article  Google Scholar 

  90. Fu LH, Dong YY, Ma MG, Li SM, Sun SL, Sun RC (2013) Zn5(OH)8Cl2⋅H2O sheets formed using cellulose as matrix via microwave-assisted method and its transformation to ZnO. Mater Lett 92:136–138

    Article  Google Scholar 

  91. Ma MG, Deng F, Yao K (2014) Manganese-containing cellulose nanocomposites: microwave synthesis, characterization, and the restrain effect of cellulose. Carbohydr Polym 111:230–235

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Fundamental Research Funds for the Central Universities (No. JC2013-3), Beijing Nova Program (Z121103002512030), the Program for New Century Excellent Talents in University (NCET-11-0586), and National Natural Science Foundation of China (31070511) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, MG. (2015). Green Synthesis: Properties and Potential Applications in Nanomaterials and Biomass Nanocomposites. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics