Skip to main content

Green Synthesis of Metallic and Metal Oxide Nanoparticles and Their Antibacterial Activities

  • Chapter
Green Processes for Nanotechnology

Abstract

In recent years, the development of metallic and metal oxide nanoparticles in an eco-friendly manner using plant materials has attracted considerable attention. The biogenic reduction of metal ions to the base metal is quite rapid, can be conducted readily at room temperature under sunlight conditions, can be scaled up easily, and the method is eco-friendly. The reducing agents involved include various water-soluble metabolites (e.g., alkaloids, terpenoids, polyphenolic compounds) and coenzymes. Noble metals (silver and gold) have been the main focus of plant-based synthesis. These green synthesized nanoparticles have a range of shapes and sizes compared to those produced by other organisms. The advantages of using plant-derived materials for nanoparticle synthesis have attracted the interest of researchers to investigate the mechanisms of metal ions uptake and bio-reduction by plants. These biosynthesized metallic and metal oxide nanoparticles have a wide range of biological applications. This chapter, however, discusses only the antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetidis S (ed) Nanostructured materials and their applications. NanoScience and Technology. Springer-Verlag Berlin Heidelberg 2012. doi:10.1007/978-3-642-22227-6_1

  2. Schmid G (1992) Chem Rev 92:1709–1727

    Google Scholar 

  3. Hoffman AJ, Mills G, Yee H, Hoffmann M (1992) J Phys Chem 96:5546–5552

    Google Scholar 

  4. Colvin VL, Schlamp MC, Alivisatos A (1994) Nature 370:354–357

    Google Scholar 

  5. Wang Y, Herron N (1991) J Phys Chem 95:525–532

    Google Scholar 

  6. Mansur HS, Grieser F, Marychurch MS, Biggs S, Urquhart RS, Furlong D (1995) J Chem Soc Faraday Trans 91:665–672

    Google Scholar 

  7. Wang Y (1991) Acc Chem Res 24:133–139

    Google Scholar 

  8. Yoffe A (1993) Adv Phys 42:173–266

    Google Scholar 

  9. Tan M, Wang G, Ye Z, Yuan J (2006) Lumin 117:20–28

    Google Scholar 

  10. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) J Nucl Med 49:1371–1379

    Google Scholar 

  11. Pissuwan D, Valenzuela SM, Cortie MB (2006) Trends Biotechnol 24:62–67

    Google Scholar 

  12. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) J Nanopart Res 6:411–414

    Google Scholar 

  13. Cai W, Gao T, Hong H, Sun J (2008) Nanotechnol Sci Appl 1:17–32

    Google Scholar 

  14. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896–1908

    Google Scholar 

  15. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) J Am Chem Soc 130:2780–2782

    Google Scholar 

  16. Tang D, Yuan R, Chai Y (2007) Biosens Bioelectron 22:1116–1120

    Google Scholar 

  17. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Anal Chem 80:1067–1072

    Google Scholar 

  18. Nagajyothi PC, Lee KD, Sreekanth TVM (2014) Synth React Inorg Metal-Org Nano-Metal Chem 4:1011–1018

    Google Scholar 

  19. Tetty CO, Nagajyothi PC, Lee SE, Ocloo A, Minh An TN, Sreekanth TVM, Lee KD (2012) Int J Cosm Sci 34:150–154

    Google Scholar 

  20. Sreekanth TVM, Nagajyothi PC, Lee KD (2012) Adv Sci Lett 6:63–69

    Google Scholar 

  21. Nagajyothi PC, Sreekanth TVM, Prasad TNVKV, Lee KD (2012) Adv Sci Lett 5:124–130

    Google Scholar 

  22. Tseng WL, Huang MF, Huang YF, Chang HT (2005) Electrophoresis 26:3069–3075

    Google Scholar 

  23. Kotthaus S, Gunther BH, Hang R, Schafer H (1997) IEEE Trans Compon Packag Manuf Technol Part A 20:15–20

    Google Scholar 

  24. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Google Scholar 

  25. Zhang W, Wang G (2003) New Chem Mater 31:42–44

    Google Scholar 

  26. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Colloids Surf B 76:50–56

    Google Scholar 

  27. Elumalai EK, Prasad TNVKV, Hemachandran J, Viviyan Therasa S, Thirumalai T, David E (2010) J Pharm Sci Res 2:549–554

    Google Scholar 

  28. Nagajyothi PC, Sreekanth TVM, Jae-il Lee, Kap Duk Lee (2014) J Photochem Photobiol B Biol 130:299–304

    Google Scholar 

  29. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Trends Biotechnol 19:15–20

    Google Scholar 

  30. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI (2001) Nano Lett 1:515–519

    Google Scholar 

  31. Thakkar KN, Mhatre SS, Parikh RY (2010) Nanomed Nanotechnol Biol Med 6:257–262

    Google Scholar 

  32. Dura’n N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) J Biomed Nanotechnol 3:203–208

    Google Scholar 

  33. Adlim M, Bakar MA, Liew KY, Ismail J (2004) J Mol Catal A 212:141–149

    Google Scholar 

  34. Chakraborty S, Raj CR (2009) Biosens Bioelectron 24:3264–3268

    Google Scholar 

  35. Venu R, Ramalu TS, Znandakumar S, Rani VS, Kim CG (2011) Colloids Surf A 384:733–738

    Google Scholar 

  36. Lin X, Wu M, Kuga S, Endo T, Huang Y (2011) Green Chem 13:283–287

    Google Scholar 

  37. Čechalova V, Kalendova A (2007) J Phys Chem Solids 68:1096–1100

    Google Scholar 

  38. Nagajyothi PC, Sreekanth TVM, Tettey CO, Yang In June, Shin Heung Mook (2014) Bioorg Med Chem Lett 24:4298–4303

    Google Scholar 

  39. Mittal AK, Chisti Y, Banerjee UB (2013) Biotechnol Adv 31:346–356

    Google Scholar 

  40. Suliman AE, Tang Y, Xu L (2007) Sol Energy Mater Sol Cell 91:1658–1662

    Google Scholar 

  41. Parida KM, Dash SS, Das DP (2006) J Colloid Interface Sci 298:787–793

    Google Scholar 

  42. Gao T, Wang TH (2005) Appl Phys A 80:1451–1454

    Google Scholar 

  43. Gardea-Torresdey JL, Parsons JG, Dokken K, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M (2002) Nano Lett 2:397–401

    Google Scholar 

  44. Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Jose Yacaman M (2003) Langmuir 19:1357–1361

    Google Scholar 

  45. Nagajyoyhi PC, Sreekanth TVM, Lee KD (2012) Synt React Inorg Metal-Org Nano-Metal Chem 42:1339–1344

    Google Scholar 

  46. Akhtar MS, Panwar J, Yun Y-S (2013) ACS Sustain Chem Eng 1:591–602

    Google Scholar 

  47. Sathishkumar M, Krishnamurthy S, Yun YS (2010) Biores Technol 101:7958–7965

    Google Scholar 

  48. Divya MJ, Sowmia C, Joona K, Dhanya KP (2013) Res J Pharm Biol Chem Sci 4:1137–1142

    Google Scholar 

  49. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Spectrochim Acta Part A Mol Biomol Spectros 137:886–891

    Google Scholar 

  50. Vanathi P, Rajiv P, Narendhran S, Rajeshwari S, Rahman KSM, Venckatesh R (2014) Mat Lett 134:13–15

    Google Scholar 

  51. Sreekanth TVM, Kap Duk Lee (2013) Curr Nanosci 9:457–462

    Google Scholar 

  52. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Dig J Nanomater Biostruct 5:483–489

    Google Scholar 

  53. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE (2010) Langmuir 27:264–271

    Google Scholar 

  54. Saxena A, Tripathi RM, Singh RP (2010) Dig J Nanomater Biostruct 5:427–432

    Google Scholar 

  55. Bipinchandra KS, Shin J, Shailesh SS, Alkotaini B, Lee S, Kim BS (2014) Korean J Chem Eng 31:2035–2040

    Google Scholar 

  56. Sreekanth TVM, Ravikumar S, Eom IY (2014) J Photochem Photobiol B Biol 141:100–105

    Google Scholar 

  57. Priya B, Mantosh S, Aniruddha M, Papita D (2014) Bioresou Bioprocess 1:1–10

    Google Scholar 

  58. Sharma G, Jasuja ND, Rajgovind, Singhal P, Josh SC (2014) J Microb Biochem Technol 6:1–3

    Google Scholar 

  59. Umoren SA, Obot IB, Gase ZM (2014) J Mater Environ Sci 5:907–914

    Google Scholar 

  60. Velmurugan P, Krishnan A, Manoharan M, Kui-Jae L, Min Cho, Sang-Myeong L, Jung-Hee P, Sae-Gang Oh, Keuk-Soo Bang, Byung-Taek Oh (2014) Bioproc Biosyst Eng 37:1935–1943

    Google Scholar 

  61. Manal AA, Awatif Hendi A, Khalid Ortashi MO, Dalia Elradi FA, Nada Eisa E, Lamia A, Al-lahieb M, Shorog, Al-Otiby, Nada M, Merghani, Abdelelah Awad AG (2014) Int J Phys Sci 9:34–40

    Google Scholar 

  62. Shivakumar PS, Vidyasagar GM (2014) Int J Green Chem Bioprocess 4:1–5

    Google Scholar 

  63. Saikia D (2014) Int J Latest Res Sci Technol 3:132–135

    Google Scholar 

  64. Umesh Kumar P, Nayak PL (2012) World J Nano Sci Technol 1:10–25

    Google Scholar 

  65. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Nanotechnology 18:104–105

    Google Scholar 

  66. Narayanan KB, Sakthivel N (2008) Mater Lett 62:4588–4590

    Google Scholar 

  67. Ramezania N, Ehsanfara Z, Shamsab F, Aminc G, Shahverdid HR, Esfahanic HRM, Shamsaiea A, Bazazb RD, Shahverdi AR (2008) Z Naturforsch 63b:903–908

    Google Scholar 

  68. Raghunandan D, Bedre D, Mahesh S, Basavaraja SD, Balaji SY, Manjunath Venkataraman A (2011) J Nanopart Res 13:2021–2028

    Google Scholar 

  69. Balaprasad A (2010) E-J Chem 7:1334–1339

    Google Scholar 

  70. Anuj Mishra N, Bhadauria S, Mulayam Gaur S, Pasricha R, Kushwah SB (2010) Int J Green Nanotechnol Phys Chem 1:118–124

    Google Scholar 

  71. Thirumurugan A, Jiflin GJ, Rajagomathi G, Tomy NA, Ramachandran S, Jaiganesh R (2010) Int J Biol Technol 1:75–77

    Google Scholar 

  72. Singh PP, Chittaranjan B (2012) Int J Sci Res 2:1–4

    Google Scholar 

  73. Nellore J, Pauline PC, Amarnath K (2012) Dig J Nanomater Biostruct 7:123–133

    Google Scholar 

  74. Badole MR, Dighe VV (2012) Int J Drug Disco Herb Res 2:275–278

    Google Scholar 

  75. Aromal SA, Philip D (2012) Spectrochim Acta Part A Mol Biomol Spect 97:1–5

    Google Scholar 

  76. Laura Castro M, Blázquez L, González F, Jesús A (2010) Chem Eng J 164:92–97

    Google Scholar 

  77. Ratul Kumar D, Nayanmoni G, Utpal B (2011) Bioprocess Biosyst Eng 34:615–619

    Google Scholar 

  78. Daizy P (2010) Spectrochimica Acta Part A 77:807–810

    Google Scholar 

  79. Yi GC, Wang C, Park WI (2005) Semicond Sci Technol 20:22–34

    Google Scholar 

  80. Senthil TS, Muthukumarasamy N, Misook Kang (2014) Bull Korean Chem Soc 35:1050–1056

    Google Scholar 

  81. Nagajyothi PC, Minh An TN, Sreekanth TVM, Jae-il Lee, Dong Joo Lee, Lee KD (2013) Mater Lett 108:160–163

    Google Scholar 

  82. Salam HA, Sivaraj R, Venckatesh R (2014) Mat Lett 131:16–18

    Google Scholar 

  83. Senthilkumar SR, Sivakumar T (2014) Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  84. Vimalaa K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Proc Biochem 49:160–172

    Google Scholar 

  85. Gnanasangeetha D, SaralaThambavani D (2013) Res J Mater Sci 1:1–8

    Google Scholar 

  86. Kumar B, Smita K, Cumbal L, Debut A (2014) Bioinorg Chem Appl Article ID 523869, 7 p

    Google Scholar 

  87. Bhumi G, Ratna Raju Y, Savithramma N (2014) Int J Drug Dev Res 6:97–104

    Google Scholar 

  88. Awwad MA, Albiss B, Ahmad L (2014) Adv Mater Lett 5:520–524

    Google Scholar 

  89. Gnanasangeetha D, Thambavani SD (2014) Int J Pharma Sci Res 5:2866–2873

    Google Scholar 

  90. Liny P, Divya T, Barasa Malakar, Nagaraj B, Krishnamurthy NB, Dinesh R (2012) Int J Pharma Biosci 3:439–446

    Google Scholar 

  91. Krishnamurthy N, Nagaraj B, Barasa Malakar, Liny P, Dinesh R (2012) Int J Pharma Biosci 3:212–221

    Google Scholar 

  92. Burygin GL (2009) Nanoscale Res Lett 4:794–801

    Google Scholar 

  93. Williams DN, Ehrman SH, Holoman TRP (2006) J Nanobiotechnol 4:1–8

    Google Scholar 

  94. Huang WC, Tsai PJ, Chen YC (2007) Nanomedicine 2:777–787

    Google Scholar 

  95. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Nano Lett 3:1261–1263

    Google Scholar 

  96. Rosemary MJ, MacLaren I, Pradeep T (2006) Langmuir 22:10125–10129

    Google Scholar 

  97. Grace NA, Pandian K (2007) Colloids Surf A Physicochem Eng Asp 297:63–70

    Google Scholar 

  98. Rai A, Prabhune A, Perry CC (2010) J Mater Chem 20:6789–6798

    Google Scholar 

  99. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) Water Res 42:3066–3074

    Google Scholar 

  100. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) J Hazard Mater 201:244–249

    Google Scholar 

  101. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K (2010) Int J Nanomed 5:1085–1094

    Google Scholar 

  102. Zawrah MF, Abd el-moez SI (2011) Life Sci 8:37–44

    Google Scholar 

  103. Kateryna Kon, Mahendra Rai (2013) J Comp Clin Path Res 2:160–174

    Google Scholar 

  104. Priya B, Satapathy M, Mukhopahayay A, Das P (2014) Bioresou Bioprocess 1:1–10

    Google Scholar 

  105. Sondi I, Salopek-Sondi B (2004) J Colloid Interf Sci 275:177–182

    Google Scholar 

  106. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanomed Nanotech Biol Med 3:95–101

    Google Scholar 

  107. Murugan K, Senthilkumar B, Al-Sohaibani S (2014) Int J Nanomed 9:2431–2438

    Google Scholar 

  108. Raffin M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) J Mater Sci Technol 24:192–196

    Google Scholar 

  109. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R (2008) J Phys Chem C 112:5825–5834

    Google Scholar 

  110. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri J, Ramirez JT (2005) Nanotechnology 16:1353–2346

    Google Scholar 

  111. Wang G, Shi C, Zhao N, Du X (2007) Mater Lett 61:3795–3797

    Google Scholar 

  112. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) J Appl Microbiol 112:841–852

    Google Scholar 

  113. Pal S, Tak YK, Song JM (2007) Appl Environ Microbiol 73:1712–1720

    Google Scholar 

  114. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Nano Lett 6:866–870

    Google Scholar 

  115. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Environ Sci Technol 40:6151–6156

    Google Scholar 

  116. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C (2007) Appl Phys Lett 90:2139021–2139023

    Google Scholar 

  117. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) J Nanopart Res 9:479–489

    Google Scholar 

  118. Jayaseelan C, Abdul Rahuman A, Vishnu Kirthi A, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara Rao KV (2012) Spectrocemica Acta Part A 90:78–84

    Google Scholar 

  119. Mariappan P, Krishnamoorthy K, Kadarkaraithangam J, Govindasamy M (2011) Nanotechnol Biol Med 7:184–192

    Google Scholar 

  120. Sawai JJ (2003) Microbiol Meth 54:177–182

    Google Scholar 

  121. Yamamoto O (2001) Int J Inorg Mater 3:643–646

    Google Scholar 

  122. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) J Appl Microbiol 107:1193–1201

    Google Scholar 

  123. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2008) J Food Sci 74:M46–M52

    Google Scholar 

  124. El-Batal AI, Hashem AA, Abdelbaky NM (2013) Springerplus 23:129–142

    Google Scholar 

  125. Sreekanth TVM, Nagajyothi PC, Supraja N, Prasad TNVKV (2014) Appl Nano Sci DOI 10.1007/s13204-014-0354-x

  126. Lokina S, Narayanan V (2013) Chem Sci Trans 2(S1):S105–S110

    Google Scholar 

  127. Kirubhan R, Alagumuthu G (2014) Int J Pharm 4:195–200

    Google Scholar 

  128. Rajasekhar Reddy G, Jayakumar C, Morais AB, Sreenivasn D, Gandhi NN (2012) Int J Green Chem Bioprocess 2:1–5

    Google Scholar 

  129. Jisha ER, Balamurugan G, Edison N, Selvakumar P, Rathiga R (2012) Int J Pharm Tech Res 4:1323–1331

    Google Scholar 

  130. Nagaraj B, Divya TK, Malakar B, Krishnamurthy NB, Dinesha R, Negrila CC, Ciobanu CS, Iconaru SL (2012) Dig J Nanomater Biostr 7:899–905

    Google Scholar 

  131. Mahitha B, Raju BDP, Madhavi T, Lakshmi CNDM, Sushma NJ (2013) Ind J Adv Chem Sci 1(2):94–98

    Google Scholar 

  132. Nagaraj B, Barasa M, Divya TK, Krishnamurthy NB, Liny P, Dinesh R (2012) Int J Res 4:144–150

    Google Scholar 

  133. Kirubha R, Alagumuthu G (2014) World J Pharm Sci 2(11):1469–1474

    Google Scholar 

  134. Sharma G, Rajgovind NDJ, Suresh PS, Joshi C (2014) J Microbial Biochem Technol 6:274–278

    Google Scholar 

  135. Prakash P, Gnaprakash R, Emmanuel R, Arokiyaraj M, Saravanan M (2013) Colloids Surf B Biointerf 108:255–259

    Google Scholar 

  136. Manjunath Hullikere M, Joshi CG, Peethambar SK (2014) Res J Pharma Biol Chem Sci 5:395–401

    Google Scholar 

  137. Sreekanth TVM, Nagajyothi PC, Supraja N, Prasad, TNVKV (2014) Appl Nanosci. doi:10.1007/s13204-014-0354-x

  138. Smaranika D, Parida UK, Bindhani BK (2014) Int J Pharm Bio Sci 5:307–322

    Google Scholar 

  139. Awwad AM, Salem NM, Abdeen AO (2013) Int J Indust Chem 4:1–6

    Google Scholar 

  140. Mahitha B, Raju BDP, Dillip GR, Madhukar Reddy C, Mallikarjuna K, Manoj L, Priyanka S, Jayantha Rao K, John Sushma N (2011) Dig J Nanomater Biostr 6:135–142

    Google Scholar 

  141. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) J Nanobiotechnol 12:1–9

    Google Scholar 

  142. Shanmugavadivu M, Kuppusamy S, Ranjithkuma R (2014) AJADD 2:174–182

    Google Scholar 

  143. Natarajan RK, Nayagam AAJ, Gunagarajan S, Ekambaram MN, Manimaran A (2013) World Appl Sci J 23:1314–1321

    Google Scholar 

  144. Sangeetha G, Rajeshwari S, Rajendranb V (2012) Mater Int 22:693–700

    Google Scholar 

  145. Ramesh M, Anbuvannan M, Viruthagir G (2014) Spectrochimica Acta Part A Mol Biomol Spectros. doi:10.1016/j.saa.2014.09.105

    Google Scholar 

  146. Ayeshamariam A, Kashif M, Vidhya VS, Sankaracharyulu MGV, Swaminathan V, Bououdina M, Jayachandran M (2014) J Optoelect Biomed Mater 6:85–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. M. Sreekanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagajyothi, P.C., Sreekanth, T.V.M. (2015). Green Synthesis of Metallic and Metal Oxide Nanoparticles and Their Antibacterial Activities. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics