Skip to main content

Biomimetic Soft Polymer Nanomaterials for Efficient Chemical Processes

  • Chapter

Abstract

Nanostructured soft materials combine structure and function to produce effects inspired by natural systems. Recent innovations in polymer science and supramolecular chemistry have led to the development of materials that can respond to and control their microenvironment, allowing them to increase the efficiency of chemical processes while decreasing their ecological impact. Size effects are profound at the nanoscale, allowing for a broad range of applications. This chapter features synthetic biomimetic nanosystems at different size regimes and match them with biological counterparts from tissues through cell walls to vesicles and proteins. The application of soft, bioinspired nanomaterials in fields ranging from medicine to sustainable energy represents a fundamental advancement in science and technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Google Scholar 

  2. Wendell DW, Patti J, Montemagno CD (2006) Using biological inspiration to engineer functional nanostructured materials. Small 2:1324–1329

    Article  Google Scholar 

  3. Raynal M, Ballester P, Vidal-Ferran A et al (2014) Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 43:1734–1787

    Article  Google Scholar 

  4. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813–817

    Article  Google Scholar 

  5. Kumar D, Sharma RC (1998) Advances in conductive polymers. Euro Polymer J 34:1053–1060

    Article  Google Scholar 

  6. Guo B, Glavas L, Albertsson AC (2013) Biodegradable and electrically conducting polymers for biomedical applications. Progr Polymer Sci 38:1263–1286

    Article  Google Scholar 

  7. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  Google Scholar 

  8. Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21:241–247

    Article  Google Scholar 

  9. Lehn JM (2002) Toward self-organization and complex matter. Science 295:2400–2403

    Article  Google Scholar 

  10. Isrealachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  11. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Progr Polymer Sci 32:876–921

    Article  Google Scholar 

  12. Fonner JM, Forciniti L, Nguyen H et al (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124

    Article  Google Scholar 

  13. Lee JY, Bashur CA, Goldstein AS et al (2009) Polypyrrole-coated electrospun PLGA nanofibres for neural tissue applications. Biomaterials 26:4325–4335

    Article  Google Scholar 

  14. Lehn JM (2005) Dynamers: dynamic molecular and supramolecular polymers. Progr Polymer Sci 30:814–831

    Article  Google Scholar 

  15. Jones DM, Smith JR, Huck WT et al (2002) Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly (N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations. Adv Mater 14:1130–1134

    Article  Google Scholar 

  16. Gabai R, Sallacan N, Chegel V et al (2001) Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by Faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments. J Phys Chem B 105:8196–8202

    Article  Google Scholar 

  17. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  Google Scholar 

  18. Lin L, Yan J, Li J (2014) Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring. Anal Chem 86:10546–10551. doi:10.1021/ac501983a

    Article  Google Scholar 

  19. Minten IJ, Claessen VI, Blank K et al (2011) Catalytic capsids: the art of confinement. Chem Sci 2:358–362

    Article  Google Scholar 

  20. Wang Q, Li L, Xu B (2009) Bioinspired supramolecular confinement of luminol and heme proteins to enhance the chemiluminescent quantum yield. Chem Eur J 15:3168–3172

    Article  Google Scholar 

  21. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26

    Article  Google Scholar 

  22. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  23. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  Google Scholar 

  24. Kim JH, Nam DH, Park CB (2014) Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 28:1–9

    Article  Google Scholar 

  25. Kim JH, Lee M, Lee JS et al (2012) Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew Chem Int Ed 51:517–520

    Article  Google Scholar 

  26. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202

    Article  Google Scholar 

  27. Eisenmesser EZ, Millet O, Labeikovsky W et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    Article  Google Scholar 

  28. Dong Z, Luo Q, Liu J (2012) Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 41:7890–7908

    Article  Google Scholar 

  29. Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nanospace. Chem Soc Rev 37:247–262

    Article  Google Scholar 

  30. Conn MM, Rebek J (1997) Self-assembling capsules. Chem Rev 97:1647–1668

    Article  Google Scholar 

  31. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 29:2418–2421

    Article  Google Scholar 

  32. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Chem 21:1171–1178

    Google Scholar 

  33. Kirby AJ (1996) Enzyme mechanisms, models, and mimics. Angew Chem Int Ed 35:706–724

    Article  Google Scholar 

  34. Li M, Wong KK, Mann S (1999) Organization of inorganic nanoparticles using biotin-streptavidin connectors. Chem Mater 11:23–26

    Article  Google Scholar 

  35. Okuda M, Iwahori K, Yamashita I et al (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84:187–194

    Article  Google Scholar 

  36. Lee SY, Gao X, Matsui H (2007) Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: growth of β-Ga2O3 nanoparticles on peptide assemblies as nanoreactors. J Am Chem Soc 129:2954–2958

    Article  Google Scholar 

  37. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Article  Google Scholar 

  38. Kumar B, Llorente M, Froehlich J et al (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569

    Article  Google Scholar 

  39. Barton EE, Rampulla DM, Bocarsly AB (2007) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344

    Article  Google Scholar 

  40. Lim CH, Holder AM, Hynes JT et al (2014) Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. J Am Chem Soc 136:16081–16095

    Article  Google Scholar 

  41. Malardier-Jugroot C, van de Ven TGM, Whitehead MA (2005) Linear conformation of poly(styrene-alt-maleic anhydride) capable of self-assembly: a result of chain stiffening by internal hydrogen bonds. J Phys Chem B 109:7022–7032

    Article  Google Scholar 

  42. McTaggart M, Malardier-Jugroot C, Jugroot M (2015) Self-assembled polymeric nanoreactors with precious metals as active centers. Macromolecules (submitted)

    Google Scholar 

  43. Li X, Malardier-Jugroot C (2013) Confinement effect in the synthesis of polypyrrole within polymeric templates in aqueous environments. Macromolecules 46:2256–2266

    Google Scholar 

  44. Groves MN, Malardier-Jugroot C, Jugroot M (2014) Environmentally friendly synthesis of supportless Pt based nanoreactors in aqueous solution. Chem Phys Lett 612:309–312

    Article  Google Scholar 

  45. Huang X, Li S, Huang Y et al (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Malardier-Jugroot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McTaggart, M., Jugroot, M., Malardier-Jugroot, C. (2015). Biomimetic Soft Polymer Nanomaterials for Efficient Chemical Processes. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics