Skip to main content

Sustainable and Very-Low-Temperature Wet-Chemistry Routes for the Synthesis of Crystalline Inorganic Nanostructures

  • Chapter
  • 2067 Accesses

Abstract

In this chapter, selected low (T < 200 °C)-temperature wet-chemistry routes for the synthesis of crystalline inorganic compounds are described and reviewed, outlining their main features and application fields. In particular, the chosen approaches are hydro/solvothermal synthesis, template-assisted approaches, nucleation and growth in solution/suspension, microemulsion and miniemulsion. The described synthetic strategies have been selected since all of them, once optimized the experimental set-up and conditions, comply with the paradigms of green chemistry, being based on low (or even room) temperature of processing, on low chemical consumption (they are all bottom-up approach), in many cases having water as solvent or dispersing medium. In this regard, environmentally friendly methodologies for the controlled synthesis of inorganic nanostructures represent a stimulating research playground, since the use of environmentally friendly, green, cost-effective and technically sound approaches to inorganic crystalline nanostructures does not necessarily imply to sacrifice the sample crystallinity, purity, and monodispersity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anastas PT, Warner JC (2000) Green chemistry theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Mao Y, Park T-J et al (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3(7):1122–1139

    Google Scholar 

  3. Cushing BL, Kolesnichenko VL et al (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946

    Google Scholar 

  4. Dahl JA, Maddux BLS et al (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Google Scholar 

  5. Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355–2365

    Google Scholar 

  6. Mitzi DB (2009) Solution processing of inorganic materials. Wiley, Hoboken

    Google Scholar 

  7. Schubert U, Hüsing N et al (2008) Materials syntheses. Springer, Vienna

    Google Scholar 

  8. Caruso F (ed) (2004) Colloids and colloid assemblies—synthesis, modification, organization and utilization of colloid particles, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  9. Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  10. Schubert U, Hüsing N (2005) Synthesis of inorganic materials, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  11. Glaister RM, Allen NA et al (1965) Comparison of methods for preparing fine ferrite powders. Proc Brit Ceram Soc No 3:67–80

    Google Scholar 

  12. Sritharan T, Boey FYC et al (2007) Synthesis of complex ceramics by mechanochemical activation. J Mater Process Technol 192–193:255–258

    Google Scholar 

  13. Lazarevic ZZ, Jovalekic C et al (2012) Preparation and characterization of nano ferrites. Acta Phys Pol 121:682–686

    Google Scholar 

  14. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents—synthesis, formation assembly and applications. Springer, New York

    Google Scholar 

  15. Muñoz-Espí R, Mastai Y et al (2013) Colloidal systems for crystallization processes from liquid phase (invited highlight). CrystEngComm 15(12):2175–2191

    Google Scholar 

  16. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Google Scholar 

  17. Grzelczak M, Perez-Juste J et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Google Scholar 

  18. Abalde-Cela S, Aldeanueva-Potel P et al (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7:S435–S450

    Google Scholar 

  19. Alvarez-Puebla RA, Liz-Marzan LM (2010) Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci 3(8):1011–1017

    Google Scholar 

  20. Wang YX, Yun WB et al (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424(6944):50–53

    Google Scholar 

  21. Modeshia DR, Walton RI (2010) Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem Soc Rev 39(11):4303–4325

    Google Scholar 

  22. Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4(12):840–848

    Google Scholar 

  23. Romo-Herrera JM, Alvarez-Puebla RA et al (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315

    Google Scholar 

  24. Calvert P, Rieke P (1996) Biomimetic mineralization in and on polymers. Chem Mater 8(8):1715–1727

    Google Scholar 

  25. Livage J, Sanchez C (2005) Towards a soft and biomimetic nanochemistry. Actual Chim 290–291:72–76

    Google Scholar 

  26. Sanchez C, Arribart H et al (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Google Scholar 

  27. Andre R, Tahir MN et al (2012) Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. FEBS J 279:1737–1749

    Google Scholar 

  28. Ma T-Y, Yuan Z-Y (2012) Bioinspired approach to synthesizing hierarchical porous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  29. Lepoint T, Lepoint-Mullie F et al (1999) Single bubble sonochemistry. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, Netherlands, pp 285–290

    Google Scholar 

  30. Kumar RV, Palchik O et al (2002) Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 9(2):65–70

    Google Scholar 

  31. Wang H, Zhang J-R et al (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater Lett 55(4):253–258

    Google Scholar 

  32. Cansell F, Chevalier B et al (1999) Supercritical fluid processing: a new route for materials synthesis. J Mater Chem 9:67–75

    Google Scholar 

  33. Aimable A, Muhr H et al (2009) Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: towards a better control of the process. Powder Technol 190:99–106

    Google Scholar 

  34. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817

    Google Scholar 

  35. Kuznestov VA (1973) Hydrothermal method for the growth of crystals. Sov Phys Crystallogr 17(4):775–804

    Google Scholar 

  36. Labachev AN (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York

    Google Scholar 

  37. Francis RJ, O’Hare D (1998) The kinetics and mechanisms of the crystallisation of microporous materials J Chem Soc Dalton Trans 19:3133–3148

    Google Scholar 

  38. Rickard DT, Wickman FE (1981) Chemistry and geochemistry of solutions at high temperature and pressure. Pergamon, New York

    Google Scholar 

  39. Laudise RA (1987) Hydrothermal crystal growth—some recent results. In: Dryburgh PM, Cockayne B, Barraclough KG (eds) Advanced crystal growth. Prentice Hall, New York, pp 267–286

    Google Scholar 

  40. Whittingham MS, Guo J-D et al (1995) The hydrothermal synthesis of new oxide materials. Solid State Ion 75:257–268

    Google Scholar 

  41. Whittingham MS (1996) Hydrothermal synthesis of transition metal oxides under mild conditions. Curr Opin Solid State Mater Sci 1(2):227–232

    Google Scholar 

  42. Segal D (1997) Chemical synthesis of ceramic materials. J Mater Chem 7:1297–1305

    Google Scholar 

  43. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460

    Google Scholar 

  44. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—a technology for crystal growth and materials processing. Noyes, Park Ridge

    Google Scholar 

  45. Feng S, Xu R (2001) New materials in hydrothermal synthesis. Acc Chem Res 34(3):239–247

    Google Scholar 

  46. Yu S-H (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65–S75 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  47. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82(1–2):1–78

    Google Scholar 

  48. Sheets WC, Mugnier E et al (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18(1):7–20

    Google Scholar 

  49. Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170

    Google Scholar 

  50. Querejeta A, Varela A et al (2009) Hydrothermal synthesis: a suitable route to elaborate nanomanganites. Chem Mater 21(9):1898–1905

    Google Scholar 

  51. Shi W, Song S et al (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42(13):5714–5743

    Google Scholar 

  52. Ehrentraut D, Sato H et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Ch 52(4):280–335

    Google Scholar 

  53. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001

    MathSciNet  Google Scholar 

  54. Chen X, Fan H et al (2005) Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J Cryst Growth 284:434–439

    Google Scholar 

  55. Liu N, Chen X et al (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51

    Google Scholar 

  56. Mai H-X, Sun L-D et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109(51):24380–24385

    Google Scholar 

  57. Zhang J, Liu S et al (2011) A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H2-production activity. J Mater Chem 21(38):14655–14662

    Google Scholar 

  58. Liu S, Lu X et al (2013) Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-Ion batteries. ACS Appl Mater Interfaces 5(5):1588–1595

    Google Scholar 

  59. Zhang H, Wei B et al (2013) Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity. Appl Surf Sci 270:133–138

    Google Scholar 

  60. Zhang Y-P, Liu W et al (2014) Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Metals 33(1):1–15

    Google Scholar 

  61. Weiß Ö, Ihlein G et al (2000) Synthesis of millimeter-sized perfect AlPO4-5 crystals. Micropor Mesopor Mater 35–36:617–620

    Google Scholar 

  62. Baruwati B, Nadagouda MN et al (2008) Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J Phys Chem C 112:18399–18404

    Google Scholar 

  63. Lorentzou S, Zygogianni A et al (2009) Advanced synthesis of nanostructured materials for environmental applications. J Alloys Compd 483(1–2):302–305

    Google Scholar 

  64. Makovec D, Kodre A et al (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158

    Google Scholar 

  65. Goh SC, Chia CH et al (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater Chem Phys 120(1):31–35

    Google Scholar 

  66. Diodati S (2013) Sintesi e caratterizzazione di ferriti nanostrutturate (Synthesis and characterisation of nanostructured ferrites). Ph.D. thesis, Scuola di Dottorato in Scienze Molecolari [Scienze Chimiche], University of Padova, Italy

    Google Scholar 

  67. Diodati S, Pandolfo L et al (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7(7):1027–1042

    Google Scholar 

  68. Chen L, Shen Y et al (2009) Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater Lett 63:1099–1101

    Google Scholar 

  69. Ma Z, Zhou B et al (2013) Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. Front Environ Sci Eng 7(3):341–355

    Google Scholar 

  70. Gyergyek S, Drofenik M et al (2012) Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater Chem Phys 133(1):515–522

    Google Scholar 

  71. Holden A, Singer P (1971) Crystals and crystal growing. Anchor Books Doubleday & Company Inc., Garden City, New York

    Google Scholar 

  72. Ferey G (2000) Building units design and scale chemistry. J Solid State Chem 152:37–48 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  73. Ferey G (2000) The zeolites. Recherche: 72

    Google Scholar 

  74. Altmaier S, Behrens P (2003) Modification of ordered mesostructured materials during synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  75. Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  76. Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10(1–2):20–40

    Google Scholar 

  77. MacLaren I, Ponton CB (2000) A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J Eur Ceram Soc 20:1267–1275

    Google Scholar 

  78. Bacha E, Deniard P et al (2011) An inexpensive and efficient method for the synthesis of BTO and STO at temperatures lower than 200 °C. Thin Solid Films 519(17):5816–5819

    Google Scholar 

  79. Labachev AN (1971) Hydrodrothermal synthesis of crystals. Nauka, Moscow

    Google Scholar 

  80. Cölfen H, Antonietti M et al (2008) Mesocrystals and nonclassical crystallization. Wiley, New York

    Google Scholar 

  81. Cheng H, Ma J et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7(4):663–671

    Google Scholar 

  82. Gopalakrishnan J (1995) Chimie Douce approaches to the synthesis of metastable oxide materials. Chem Mater 7(7):1265–1275

    Google Scholar 

  83. Mao Y, Banerjee S et al (2003) Hydrothermal synthesis of perovskite nanotubes. Chem Commun 3:408–409

    Google Scholar 

  84. Burda C, Chen X et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Google Scholar 

  85. Antoine C (1888) Tensions des vapeurs; vouvelle relation entre les tensions et les températures. C R Acad Sci 107:681–684

    Google Scholar 

  86. Lide DR (2009) CRC handbook of chemistry and physics (Internet version), 89th edn. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  87. Rajamathi M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345

    Google Scholar 

  88. Tighe CJ, Gruar RI et al (2012) Investigation of counter-current mixing in a continuous hydrothermal flow reactor. J Supercrit Fluids 62:165–172

    Google Scholar 

  89. Gimeno-Fabra M, Dunne P et al (2013) Continuous flow synthesis of tungsten oxide (WO3) nanoplates from tungsten (VI) ethoxide. Chem Eng J 226:22–29

    Google Scholar 

  90. Wang Q, Tang SVY et al (2013) Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor. Nanoscale 5(1):114–117

    Google Scholar 

  91. Makgwane PR, Ray SS (2014) Synthesis of nanomaterials by continuous-flow microfluidics: a review. J Nanosci Nanotechnol 14(2):1338–1363

    Google Scholar 

  92. Middelkoop V, Tighe CJ et al (2014) Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction. J Supercrit Fluids 87:118–128

    Google Scholar 

  93. Moreira ML, Mambrini GP et al (2008) Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem Mater 20(16):5381–5387

    Google Scholar 

  94. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Google Scholar 

  95. Pang J, Luan Y et al (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A 360:6–12

    Google Scholar 

  96. Majcher A, Wiejak J et al (2013) A novel reactor for microwave hydrothermal scale-up nanopowder synthesis. Int J Chem Reactor Eng 11:361–368

    Google Scholar 

  97. Zhou Y (2005) Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci 1:35–42

    Google Scholar 

  98. Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019

    Google Scholar 

  99. Tanaka D, Kitagawa S (2008) Template effects in porous coordination polymers. Chem Mater 20(3):922–931

    Google Scholar 

  100. Thomas A, Goettmann F et al (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20(3):738–755

    Google Scholar 

  101. Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem Asian J 3(4):664–676

    Google Scholar 

  102. Zhang Q, Wang WS et al (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4(6):494–507

    Google Scholar 

  103. Ethirajan A, Landfester K (2010) Functional hybrid materials with polymer nanoparticles as templates. Chem 16:9398–9412 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  104. Qi L (2010) Colloidal chemical approaches to inorganic micro- and nanostructures with controlled morphologies and patterns. Coord Chem Rev 254:1054–1071

    Google Scholar 

  105. Ariga K, Ji QM et al (2012) Soft capsules, hard capsules, and hybrid capsules. Soft Mater 10(4):387–412

    Google Scholar 

  106. Deleuze H, Backov R (2012) Integrative chemistry routes toward advanced functional hierarchical foams. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  107. Kimling MC, Caruso RA (2012) Templating of macroporous or swollen macrostructured polymers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  108. Petkovich ND, Stein A (2012) Colloidal crystal templating approaches to materials with hierarchical porosity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  109. Su B-L, Sanchez C et al (2012) Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  110. Yan Q, Yu J et al (2012) Colloidal photonic crystals: fabrication and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  111. Zhang H (2012) Porous materials by templating of small liquid drops. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  112. Liu YD, Goebl J et al (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653

    Google Scholar 

  113. Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41

    Google Scholar 

  114. Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42(9):3721–3739

    Google Scholar 

  115. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity Chem Mater 20:682–737

    Google Scholar 

  116. Soler-Illia GJ, Sanchez C et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    Google Scholar 

  117. Rouquerol J, Avnir D et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758

    Google Scholar 

  118. Seo J, Sakamoto H et al (2010) Chemistry of porous coordination polymers having multimodal nanospace and their multimodal functionality. J Nanosci Nanotechnol 10(1):3–20

    Google Scholar 

  119. Xiao F-S, Meng X (2012) Zeolites with hierarchically porous structure: mesoporous zeolites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  120. Yokoi T, Tatsumi T (2012) Hierarchically porous materials in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  121. Zhang Y-H, Chen L-H et al (2012) Micro-macroporous structured zeolite. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  122. Janiak C, Henninger SK (2013) Porous coordination polymers as novel sorption materials for heat transformation processes. Chimia 67:419–424

    Google Scholar 

  123. Moeller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42(9):3689–3707

    Google Scholar 

  124. Crepaldi EL, Soler-Illia GJAA et al (2002) Design of transition metal oxide mesoporous thin films. Stud Surf Sci Catal 141:235–242

    Google Scholar 

  125. Grosso D, Cagnol F et al (2003) Amorphous and crystalline mesoporous materials prepared via evaporation. Self-assembled nanostructured materials. Mat Res Soc Symp Proc 775:91–99, Lu Y, Brinker CJ, Antonietti M, Bai C (eds)

    Google Scholar 

  126. Soler-Illia GJAA, Crepaldi EL et al (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8:109–126

    Google Scholar 

  127. Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  128. Kickelbick G (2004) Hybrid inorganic-organic mesoporous materials. Angew Chem Int Ed 43:3102–3104

    Google Scholar 

  129. Grosso D, Boissiere C et al (2006) Preparation, treatment and characterisation of nanocrystalline mesoporous ordered layers. J Sol Gel Sci Technol 40:141–154

    Google Scholar 

  130. Eder F, Hüsing N (2009) Mesoporous silica layers with controllable porosity and pore size. Appl Surf Sci 256:S18–S21

    Google Scholar 

  131. Hoffmann F, Fröba M (2010) Silica-based mesoporous organic-inorganic hybrid materials. Wiley, New York

    Google Scholar 

  132. Keppeler M, Holzbock J et al (2011) Inorganic-organic hybrid materials through post-synthesis modification: impact of the treatment with azides on the mesopore structure. Beilstein J Nanotechnol 2:486–498

    Google Scholar 

  133. Shi YF, Wan Y et al (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40(7):3854–3878

    Google Scholar 

  134. Nakanishi K (2012) Hierarchically structured porous materials: application to separation sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  135. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140

    Google Scholar 

  136. Ferey G, Haouas M et al (2014) Nanoporous solids: how do they form? An in situ approach. Chem Mater 26(1):299–309

    Google Scholar 

  137. Ferey G (2007) Hybrid porous solids. Stud Surf Sci Catal 168:327–374

    Google Scholar 

  138. Ferey G (2007) Metal-organic frameworks. The young child of the porous solids family. Stud Surf Sci Catal 170A:66–86

    Google Scholar 

  139. Mu CZ, Xu F et al (2007) Application of functional metal-organic framework materials. Progr Chem 19(9):1345–1356

    Google Scholar 

  140. O'Keeffe M, Peskov MA et al (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41(12):1782–1789

    Google Scholar 

  141. Czaja AU, Trukhan N et al (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38(5):1284–1293

    Google Scholar 

  142. Ferey G, Sanchez, C et al. (2010) Solid inorganic-organic polycarboxylate hybrid material based on titanium, its method of preparation and uses, Mater thesis, Université Pierre et Marie CURIE, Paris Vi, FR, pp. 42

    Google Scholar 

  143. McKinlay AC, Morris RE et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 49(36):6260–6266

    Google Scholar 

  144. Betard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083 (Washington, DC, U.S.)

    Google Scholar 

  145. Morey MS, O'Brien S et al (2000) Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 12(4):898–911

    Google Scholar 

  146. Moeller K, Yilmaz B et al (2011) One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc 133(14):5284–5295

    Google Scholar 

  147. Calzaferri G, Bruhwiler D et al (2001) Quantum-sized silver, silver chloride and silver sulfide clusters. J Imag Sci Tech 45(4):331–339

    Google Scholar 

  148. Bruhwiler D, Leiggener C et al (2002) Luminescent silver sulfide clusters. J Phys Chem B 106(15):3770–3777

    Google Scholar 

  149. Leiggener C, Bruhwiler D et al (2003) Luminescence properties of Ag2S and Ag4S2 in zeolite A. J Mater Chem 13(8):1969–1977

    Google Scholar 

  150. Leiggener C, Calzaferri G (2005) Synthesis and luminescence properties of Ag2S and PbS clusters in zeolite A. Chemistry 11(24):7191–7198

    Google Scholar 

  151. Wang YF, Bryan C et al (2002) Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina. J Colloid Interface Sci 254(1):23–30

    Google Scholar 

  152. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13(10):765–768

    Google Scholar 

  153. Liu J, Liu F et al (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19(34):6073–6084

    Google Scholar 

  154. Groger H, Kind C et al (2010) Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials 3(8):4355–4386

    Google Scholar 

  155. Hu J, Chen M et al (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491

    Google Scholar 

  156. Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164

    Google Scholar 

  157. Bao Y, Yang YQ et al (2013) Research progress of hollow structural materials prepared via templating method. J Inorg Mater 28(5):459–468

    Google Scholar 

  158. Zhang BH, Fan H et al (2013) Synthesis of mesoporous hollow inorganic micro-/nano-structures via self-templating methods. Chem J Chinese U Chinese 34(1):1–14

    MathSciNet  Google Scholar 

  159. Sarquis J (1980) Colloidal systems. J Chem Educ 57:602–605

    Google Scholar 

  160. Everett DH (1989) Basic principles of colloid science [fotocopie]. Royal Society of Chemistry, London

    Google Scholar 

  161. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  162. Fennell D, Wennerstroem H (1999) The colloidal domain. Wiley-VCH, New York

    Google Scholar 

  163. Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, New York

    Google Scholar 

  164. Bucak S, Rende D (2014) Colloid and surface chemistry, CRC Press, Boca Raton

    Google Scholar 

  165. Schramm L (2001) Dictionary of colloid and interface science. Wiley, New York

    Google Scholar 

  166. Weller H (2003) Synthesis and self-assembly of colloidal nanoparticles. Philos Trans R Soc London, Ser A 361:229–240

    Google Scholar 

  167. Goodwin J (2004) Colloids and interfaces with surfactants and polymers. Wiley, New York

    Google Scholar 

  168. Eastoe J, Hollamby MJ et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15

    Google Scholar 

  169. Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36(1):231–279

    Google Scholar 

  170. Shaw D (1992) Introduction to Colloid and Surface Chemistry (Fourth Edition). Elsevier Ltd

    Google Scholar 

  171. Hamley IW (2007) Soft matter. Wiley, New York

    Google Scholar 

  172. Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, New York

    Google Scholar 

  173. Crespy D, Staff RH et al (2012) Chemical routes toward multicompartment colloids. Macromol Chem Phys 213:1183–1189

    Google Scholar 

  174. Turkevich J, Stevenson PC et al (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55–75

    Google Scholar 

  175. Ramsay JDF (1992) Characteristics of inorganic colloids. Pure Appl Chem 64:1709–1713

    Google Scholar 

  176. Palberg T (1997) Colloidal crystallization dynamics. Curr Opin Colloid Interface Sci 2(6):607–614

    Google Scholar 

  177. Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Google Scholar 

  178. Ruckenstein E, Djikaev YS (2005) Recent developments in the kinetic theory of nucleation. Adv Colloid Interface Sci 118(1–3):51–72

    Google Scholar 

  179. Alekseeva AV, Bogatyrev VA et al (2006) Gold nanorods: synthesis and optical properties. Colloid J 68(6):661–678

    Google Scholar 

  180. Roh K-H, Martin DC et al (2006) Triphasic nanocolloids. J Am Chem Soc 128:6796–6797

    Google Scholar 

  181. Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351–374

    Google Scholar 

  182. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709

    Google Scholar 

  183. Tao AR, Habas S et al (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    Google Scholar 

  184. Gasser U (2009) Crystallization in three- and two-dimensional colloidal suspensions. J Phys Condens Matter 21(20)

    Google Scholar 

  185. Aerts A, Haouas M et al (2010) Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and Si-29 NMR spectroscopy. Chemistry 16(9):2764–2774

    Google Scholar 

  186. Herlach DM, Klassen I et al (2010) Colloids as model systems for metals and alloys: a case study of crystallization. J Phys Condens Matter 22(15)

    Google Scholar 

  187. Pileni MP (2011) Supra- and nanocrystallinities: a new scientific adventure. J Phys Condens Matter 23(50)

    Google Scholar 

  188. Richter K, Birkner A et al (2011) Stability and growth behavior of transition metal nanoparticles in ionic liquids prepared by thermal evaporation: how stable are they really? Phys Chem Chem Phys 13:7136–7141

    Google Scholar 

  189. Pileni MP (2012) Self organization of inorganic nanocrystals: unexpected chemical and physical properties. J Colloid Interface Sci 388:1–8

    Google Scholar 

  190. Pileni MP (2012) Supra- and nanocrystallinity: specific properties related to crystal growth mechanisms and nanocrystallinity. Acc Chem Res 45(11):1965–1972

    Google Scholar 

  191. Palberg T (2014) Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys Condens Matter 26(33)

    Google Scholar 

  192. Bahnemann DW, Kormann C et al (1987) Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem 91(14):3789–3798

    Google Scholar 

  193. Bahnemann DW (1993) Ultrasmall metal oxide particles: preparation, photophysical characterisation and photocatalytic properties. Isr J Chem 33(1):115–136

    Google Scholar 

  194. Erdemir D, Lee AY et al (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42(5):621–629

    Google Scholar 

  195. Xia Y, Xiong Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Google Scholar 

  196. Bronstein LM, Polarz S et al (2001) Sub-nanometer noble-metal particle host synthesis in porous silica monoliths. Adv Mater 13(17):1333–1336

    Google Scholar 

  197. Pileni MP, Lalatonne Y et al (2004) Self assemblies of nanocrystals: preparation, collective properties and uses. Faraday Discuss 125:251–264

    Google Scholar 

  198. Pileni MP (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111(26):9019–9038

    Google Scholar 

  199. Pileni MP (2008) Self-assembly of inorganic magnetic nanocrystals: a new physics emerges. J Phys D Appl Phys 41(13)

    Google Scholar 

  200. Pileni MP (2009) Self assembly of inorganic nanocrystals in 3D supra crystals: intrinsic properties. Surf Sci 603(10–12):1498–1505

    Google Scholar 

  201. Pileni MP (2010) Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys Chem Chem Phys 12(38):11821–11835

    Google Scholar 

  202. Schmid G (2006) Nanoparticles: from theory to application. Wiley VCH, Weinheim

    Google Scholar 

  203. Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328

    Google Scholar 

  204. Hutchings GJ, Brust M et al (2008) Gold—an introductory perspective. Chem Soc Rev 37(9):1759–1765

    Google Scholar 

  205. Jolivet JP, Tronc E et al (2000) Synthesis of iron oxide- and metal-based nanomaterials. Eur Phys J Appl Phys 10:167–172

    Google Scholar 

  206. Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7(2):26–31

    Google Scholar 

  207. Perez-Juste J, Pastoriza-Santos I et al (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Google Scholar 

  208. Wang X, Zhuang J et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Google Scholar 

  209. Liao H, Nehl CL et al (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208

    Google Scholar 

  210. Jain PK, Huang X et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Google Scholar 

  211. Mudring A-V, Alammar T et al (2009) Nanoparticle synthesis in ionic liquids. ACS Symp Ser 1030:177–188

    Google Scholar 

  212. Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Synthetic routes and plasmonic properties of noble metal nanoplates. Eur J Inorg Chem 27:4288–4297

    Google Scholar 

  213. Zeng H, Du X-W et al (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353

    Google Scholar 

  214. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Google Scholar 

  215. Pasquato L, Pengo P et al (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14(24):3481–3487

    Google Scholar 

  216. Guarise C, Pasquato L et al (2005) Reversible aggregation/deaggregation of gold nanoparticles induced by a cleavable dithiol linker. Langmuir 21(12):5537–5541

    Google Scholar 

  217. Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11(5):741–752

    Google Scholar 

  218. Özgür Ü, Alivov YI et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):1–103

    Google Scholar 

  219. Morkoç H, Özgür Ü (2008) Zinc oxide: materials preparation, properties, and devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  220. Morkoç H, Özgür Ü (2009) Zinc oxide: fundamentals materials and device technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  221. Hilgendorff M, Spanhel L et al (1998) From ZnO colloids to nanocrystalline highly conductive films. J Electrochem Soc 145(10):3632–3637

    Google Scholar 

  222. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B Solid 80(1–3):383–387

    Google Scholar 

  223. Cozzoli PD, Kornowski A et al (2005) Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction. J Phys Chem B 109(7):2638–2644

    Google Scholar 

  224. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573

    Google Scholar 

  225. Klingshirn C, Hauschild R et al (2005) ZnO rediscovered—once again!? Superlattices Microstruct 38(4–6):209–222

    Google Scholar 

  226. Buha J, Djerdj I et al (2006) Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile. Cryst Growth Des 7(1):113–116

    Google Scholar 

  227. Dem'yanets L, Li L et al (2006) Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci 41(5):1439–1444

    Google Scholar 

  228. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961

    Google Scholar 

  229. Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol Gel Sci Technol 39(1):7–24

    Google Scholar 

  230. Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027–3073

    Google Scholar 

  231. Klingshirn C (2007) ZnO: material, physics and applications. ChemPhysChem 8(6):782–803

    Google Scholar 

  232. Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide, vol 104. Springer, Berlin/Heidelberg, pp 1–33

    Google Scholar 

  233. Anderson J, Chris GVW (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501

    Google Scholar 

  234. Ahmad M, Zhu J (2011) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21(3):599–614

    MathSciNet  Google Scholar 

  235. Gomez J, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48(2):612–624

    Google Scholar 

  236. Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Trans 42(35):12554–12568

    Google Scholar 

  237. Wahab R, Khan F et al (2013) Hydrogen adsorption properties of nano- and microstructures of ZnO. J Nanomater 542753

    Google Scholar 

  238. Famengo A, Anantharaman S et al (2009) Facile and reproducible synthesis of nanostructured colloidal ZnO nanoparticles from zinc acetylacetonate: effect of experimental parameters and mechanistic investigations. Eur J Inorg Chem 33:5017–5028

    Google Scholar 

  239. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113(8):2826–2833

    Google Scholar 

  240. Niederberger M, Garnweitner G et al (2006) Non-aqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications. Prog Solid State Chem 33:59–70

    Google Scholar 

  241. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304

    Google Scholar 

  242. Franzmann E, Khalil F et al (2011) A biomimetic principle for the chemical modification of metal surfaces: synthesis of tripodal catecholates as analogues of siderophores and mussel adhesion proteins. Chemistry Eur. J (Chemistry- A European Journal) 17(31):8596–8603

    Google Scholar 

  243. Khalil F, Franzmann E et al (2014) Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel. Colloids Surf B Biointerfaces 117:185–192

    Google Scholar 

  244. Maison W, Khalil F et al. Synthesis of tripodal bisphosphonate derivatives with an adamantyl base for functionalising surfaces Patent number: EP 2428517 B1 20131106 (DE) Univ Giessen, Justus-Liebig, Germany

    Google Scholar 

  245. Maison W, Khalil F et al. Synthesis of tripodal catechol derivatives with a flexible base for functionalising surfaces Patent number: EP 2428503 B1 20141210 (DE) Univ Giessen, Justus-Liebig, Germany

    Google Scholar 

  246. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles J Am Chem Soc 126:9938–9939

    Google Scholar 

  247. Ye Q, Zhou F et al (2011) Bioinspired catecholic chemistry for surface modification Chem Soc Rev 7:4244–4258

    Google Scholar 

  248. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    Google Scholar 

  249. Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2(8):903–905

    Google Scholar 

  250. Murphy CJ, Sau TK et al (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30(5):349–355

    Google Scholar 

  251. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670 (London, U. K.)

    Google Scholar 

  252. Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf 295(1–3):228–232

    Google Scholar 

  253. Nelayah J, Kociak M et al (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353

    Google Scholar 

  254. Lu X, Rycenga M et al (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192

    Google Scholar 

  255. Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41(1):242–257

    Google Scholar 

  256. Klinkova A, Choueiri RM et al (2014) Self-assembled plasmonic nanostructures. Chem Soc Rev 43(11):3976–3991

    Google Scholar 

  257. Caswell KK, Bender CM et al (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669

    Google Scholar 

  258. Li J, Chen Z et al (1999) Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord Chem Rev 190–192:707–735 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  259. Gautam UK, Ghosh M et al (2002) Solvothermal routes to capped oxide and chalcogenide nanoparticles. Pure Appl Chem 74:1643–1649 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  260. Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234

    Google Scholar 

  261. Sokolov MN, Abramov PA (2012) Chalcogenide clusters of groups 8-10 noble metals. Coord Chem Rev 256(17–18):1972–1991

    Google Scholar 

  262. Tolia J, Chakraborty M et al (2012) Synthesis and characterization of semiconductor metal sulfide nanocrystals using microemulsion technique. Cryst Res Technol 47(8):909–916

    Google Scholar 

  263. Armelao L, Camozzo D et al (2006) Synthesis of copper sulphide nanoparticles in carboxylic acids as solvent. J Nanosci Nanotechnol 6(2):401–408

    Google Scholar 

  264. Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfide films of variable composition. J Solid State Chem 114(2):469–475

    Google Scholar 

  265. Grijalva H, Inoue M et al (1996) Amorphous and crystalline copper sulfides, CuS. J Mater Chem 6(7):1157–1160

    Google Scholar 

  266. Raevskaya AE, Stroyuk AL et al (2004) Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J Mol Catal A Chem 212(1–2):259–265

    Google Scholar 

  267. Basu M, Sinha AK et al (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44(16):6313–6318

    Google Scholar 

  268. Goel S, Chen F et al (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4):631–645

    Google Scholar 

  269. Prince LM (1977) Microemulsions: theory and practice. Academic, New York

    Google Scholar 

  270. Landfester K, Bechthold N et al (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 32(16):5222–5228

    Google Scholar 

  271. Aserin A (2008) Multiple emulsion: technology and applications. Wiley, New York

    Google Scholar 

  272. Tovstun SA, Razumov VF (2011) Preparation of nanoparticles in reverse microemulsions. Russ Chem Rev 80(10):953–969

    Google Scholar 

  273. Tadros TF (2014) An introduction to surfactants. Walter de Gruyter, Berlin

    Google Scholar 

  274. Bechthold N, Tiarks F et al (2000) Miniemulsion polymerization: applications and new materials. Macromol Symp 151:549–555

    Google Scholar 

  275. Landfester K (2000) Recent developments in miniemulsions—formation and stability mechanisms. Macromol Symp 150:171–178

    Google Scholar 

  276. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27(4):689–757

    Google Scholar 

  277. Landfester K (2003) Miniemulsions for nanoparticle synthesis. In: Antonietti M (ed) Colloid chemistry II. Springer, Berlin/Heidelberg, pp 75–123

    Google Scholar 

  278. Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123

    Google Scholar 

  279. Landfester K (2005) Designing particles: miniemulsion technology and its application in functional coating systems. Eur Coating J 20–22:24–25

    Google Scholar 

  280. Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224

    Google Scholar 

  281. Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224

    Google Scholar 

  282. Cao Z, Ziener U (2013) Synthesis of nanostructured materials in inverse miniemulsions and their applications. Nanoscale 5(21):10093–10107

    Google Scholar 

  283. Landfester K, Antonietti M 2004 Miniemulsions for the convenient synthesis of organic and inorganic nanoparticles and “single molecule” applications in materials chemistry. F. Caruso (ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG

    Google Scholar 

  284. Landfester K, Tiarks F et al (2000) Polyaddition in miniemulsions. A new route to polymer dispersions. Macromol Chem Phys 201:1–5

    Google Scholar 

  285. Landfester K, Willert M et al (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33(7):2370–2376

    Google Scholar 

  286. Weiss CK, Ziener U et al (2007) A route to nonfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules 40(4):928–938

    Google Scholar 

  287. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507

    Google Scholar 

  288. Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148

    Google Scholar 

  289. Landfester K, Weiss CK (2010) Encapsulation by miniemulsion polymerization. Adv Polym Sci 229:1–49

    Google Scholar 

  290. Willert M, Rothe R et al (2001) Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals. Chem Mater 13(12):4681–4685

    Google Scholar 

  291. Peng B, Chen M et al (2008) Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J Colloid Interface Sci 321(1):67–73

    Google Scholar 

  292. Musyanovych A, Landfester K (2007) Core-shell particles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  293. Caruso F, Spasova M et al (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13(14):1090–1095

    Google Scholar 

  294. Hajir M, Dolcet P et al (2012) Sol-gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. J Mater Chem 22(12):5622–5628

    Google Scholar 

  295. Pinna N, Weiss K et al (2001) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17(26):7982–7987

    Google Scholar 

  296. Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973

    Google Scholar 

  297. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2(3):145–150

    Google Scholar 

  298. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887–3896

    Google Scholar 

  299. Lisiecki I, Pileni MP (1995) Copper metallic particles synthesized in-situ in reverse micelles—influence of various parameters on the size of the particles. J Physa Chem 99(14):5077–5082

    Google Scholar 

  300. Maillard M, Giorgio S et al (2002) Silver nanodisks. Adv Mater 14(15):1084–1086

    Google Scholar 

  301. Pinna N, Maillard M et al (2002) Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Phys Rev B 66(4)

    Google Scholar 

  302. Maillard M, Giorgio S et al (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107(11):2466–2470

    Google Scholar 

  303. Mishra S, Daniele S et al (2007) Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev 36:1770–1787 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  304. Carpenter EE, Sims JA et al (2000) Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J Appl Phys 87(9):5615–5617

    Google Scholar 

  305. Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8(2):137–144

    Google Scholar 

  306. Lopez-Quintela MA, Tojo C et al (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9(3–4):264–278

    Google Scholar 

  307. Dolcet P, Casarin M et al (2012) Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. J Mater Chem 22:1620–1626 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)

    Google Scholar 

  308. Dolcet P, Latini F et al (2013) Inorganic chemistry in a nanoreactor: doped ZnO nanostructures by miniemulsion. Eur J Inorg Chem 2013(13):2291–2300

    Google Scholar 

  309. Butturini E, Dolcet P et al (2014) Simple, common but functional: biocompatible and luminescent rare-earth doped magnesium and calcium hydroxides from miniemulsion. J Mater Chem 2:6639–6651

    Google Scholar 

  310. Taden A, Antonietti M et al (2004) Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions. Chem Mater 16(24):5081–5087

    Google Scholar 

  311. Nabih N, Schiller R et al (2011) Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology 22(13):135606

    Google Scholar 

  312. Rossmanith R, Weiss CK et al (2008) Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chem Mater 20:5768–5780

    Google Scholar 

  313. Kubiak P, Froeschl T et al (2011) TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. Small 7:1690–1696

    Google Scholar 

  314. Heutz NA, Dolcet P et al (2013) Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale 5:10534–10541

    Google Scholar 

  315. Rohe M, Löffler E et al (2008) A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Trans 864(44):6106–6109

    Google Scholar 

Download references

Acknowledgements

The Italian National Research Council (CNR), the University of Padua, Italy, and the SABIC company are acknowledged for equipment and financial support. S. G. would like to warmly thank her present and former master and PhD students, in particular Dr. Stefano Diodati and Dr. Paolo Dolcet (Dipartimento di Scienze Chimiche, Università di Padova) for their valuable and reliable support in the everyday chemist life and for their precious scientific contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gross, S. (2015). Sustainable and Very-Low-Temperature Wet-Chemistry Routes for the Synthesis of Crystalline Inorganic Nanostructures. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics