Skip to main content

Recent Developments and Trends in Redox Flow Batteries

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Stationary energy storage systems are needed to facilitate the widespread integration of intermittent renewable electricity generators, such as solar photovoltaic and wind turbines, and to improve the energy efficiency of the electrical grid.  While no single technology can meet all needs, redox flow batteries (RFBs) have shown a favorable balance of cost, safety, and performance for many high-value applications.  RFBs are rechargeable electrochemical devices that utilize the reversible redox reactions of two soluble electroactive species for energy storage.  A compelling feature of the RFB configuration is the independent scaling of power and energy which enables cost-effective implementation of electrochemical couples with low energy density.  Aqueous RFBs have been the subject of the vast majority of research efforts to date, which have yielded industry-level demonstrations.  By comparison, non-aqueous RFBs are still in their infancy but have the potential for high energy density due to the extended stability window of non-aqueous electrolytes and the enriched selection of redox materials due to the broad variety of organic solvents.  This chapter aims to introduce emerging, potentially transformative, strategies for enhancing RFB technologies through molecular design, electrolyte development, and cell-level engineering.  Detailed discussions focus on recent developments in redox active materials (inorganic – aqueous, organic – aqueous, inorganic – non-aqueous, and organic – non-aqueous) and in system design (interdigitated flow fields, semi-solid flow cells, and hybrid flow cells).  Future research directions and key challenges for RFB technologies are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All electrode potential values are referenced to the standard hydrogen electrode unless otherwise stated.

  2. 2.

    Determined by CV of 1 mM AQDS + 1 M H2SO4 on a glassy carbon electrode versus SHE.

  3. 3.

    phendione stands for 1,10-phenanthroline-5,6-dione.

References

  1. International Energy Agency (2014) Key world energy statistics

    Google Scholar 

  2. Hojjati B, Wade SH (2012) US household energy consumption and intensity trends: a decomposition approach. Energy Policy 48:304–314

    Article  Google Scholar 

  3. U.S. Energy Information Administration (2011) Annual energy review. http://www.eia.gov/totalenergy/data/annual/index.cfm/

  4. Rising above the gathering storm: energizing and employing America for a brighter economic future. In: Committee on prospering in the global economy of the 21st century: an agenda for American science and technology; Committee on Science, Engineering, and Public Policy. National Academies Press, Washington, D.C., 2007

    Google Scholar 

  5. Ehleringer JR, Cerling TE, Dearing MD (2005) In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New York

    Google Scholar 

  6. Stocker T, Qin D, Plattner G-K (2013) Climate change 2013: the physical science basis. Working group I contributions to the IPCC fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  7. International Energy Agency (2012) Energy technology perspectives 2012: pathways to a clean energy system

    Google Scholar 

  8. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. doi:10.1038/nature11475

    Article  Google Scholar 

  9. U.S. Department of Energy (2010) Smart grid system report

    Google Scholar 

  10. U.S. Department of Energy (2013) Grid energy storage

    Google Scholar 

  11. Akhil AA, Boyes JD, Butler PC, Doughty DH (2010) Batteries for electrical energy storage applications. In: Reddy T (ed) Linden’s handbook of battery, Chap. 30, 4th edn. McGraw-Hill, New York

    Google Scholar 

  12. U.S. Department of Energy (2007) Basic research needs for electrical energy storage

    Google Scholar 

  13. International Energy Agency (2014) Technology roadmap: energy storage. http://www.iea.org/publications/freepublications/publication/name,36573,en.html. Accessed 10 April 2014

  14. Electric Power Research Institute (2003) DOE handbook of energy storage for transmission and distribution applications

    Google Scholar 

  15. Akhil AA, Huff G, Currier AB, Kaun BC, Rastler DM, Chen SB, Cotter AL, Bradshaw DT, Gauntlett WD (2013) DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Sandia National Laboratories

    Google Scholar 

  16. Electric Power Research Institute (2010) Electricity energy storage technology options

    Google Scholar 

  17. International Energy Agency (2013) Pumped storage provides grid reliability even with net generation loss. http://www.eia.gov/todayinenergy/detail.cfm?id=11991. Accessed 10 Oct 2014

  18. ARPA-E. U.S. Department of Energy. Grid-scale rampable intermittent dispatchable storage. http://www.arpa-e.energy.gov/?q=arpa-e-programs/grids. Accessed 05 Jan 2015

  19. U.S. Department of Energy (2014) Joint center for energy storage. http://www.jcesr.org. Accessed 05 Jan 2015

  20. Shin S-H, Yun S-H, Moon S-H (2013) A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective. RSC Adv 3:9095–9116. doi:10.1039/C3RA00115F

    Article  Google Scholar 

  21. Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z (2011) Membrane development for vanadium redox flow batteries. ChemSusChem 4:1388–1406. doi:10.1002/cssc.201100068

    Article  Google Scholar 

  22. Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147. doi:10.1039/c0ee00770f

    Article  Google Scholar 

  23. Chakrabarti MH, Brandon NP, Hajimolana SA, Tariq F, Yufit V, Hashim MA, Hussain MA, Low CTJ, Aravind PV (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166. doi:10.1016/j.jpowsour.2013.12.038

    Article  Google Scholar 

  24. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40. doi:10.1016/j.electacta.2012.09.067

    Article  Google Scholar 

  25. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrogen Energy 30:359–371. doi:10.1016/j.ijhydene.2004.09.019

    Article  Google Scholar 

  26. Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. doi:10.1016/j.rser.2013.08.001

    Article  Google Scholar 

  27. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986. doi:10.1002/adfm.201200694

    Article  Google Scholar 

  28. Leung P, Li X, de León CP, Berlouis L, Low CTJ, Walsh FC (2012) Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2:10125–10156. doi:10.1039/C2RA21342G

    Article  Google Scholar 

  29. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613. doi:10.1021/cr100290v

    Article  Google Scholar 

  30. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164. doi:10.1007/s10800-011-0348-2

    Article  Google Scholar 

  31. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79. doi:10.1149/1.3599565

    Article  Google Scholar 

  32. Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V (2014) Cost and performance model for redox flow batteries. J Power Sources 247:1040–1051. doi:10.1016/j.jpowsour.2012.12.023

    Article  Google Scholar 

  33. LaMonica M (2013) Enervault novel battery technology. MIT Technol Rev. http://www.technologyreview.com/view/512736/startup-enervault-rethinks-flow-battery-chemistry/. Accessed 10 Sep 2014

  34. Vanysek P (2014) Electrochemical series. In: Haynes WM (ed) CRC handbook of chemistry and physics, 95th edn. Taylor & Francis Group, Boca Raton, pp 5-80–5-89

    Google Scholar 

  35. Reid MA, Gahn RF (1977) Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells. NASA-TM X-73669

    Google Scholar 

  36. Wang W, Kim S, Chen B, Nie Z, Zhang J, Xia G-G, Li L, Yang Z (2011) A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy Environ Sci 4:4068–4073. doi:10.1039/C0EE00765J

    Article  Google Scholar 

  37. Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A (1992) Optimization studies on a Fe/Cr redox flow battery. J Power Sources 39:147–154. doi:10.1016/0378-7753(92)80133-V

    Article  Google Scholar 

  38. Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134:2950–2953. doi:10.1149/1.2100321

    Article  Google Scholar 

  39. Zhou H, Zhang H, Zhao P, Yi B (2006) A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim Acta 51:6304–6312. doi:10.1016/j.electacta.2006.03.106

    Article  Google Scholar 

  40. Skyllas-Kazacos M (2003) Novel vanadium chloride/polyhalide redox flow battery. J Power Sources 124:299–302. doi:10.1016/S0378-7753(03)00621-9

    Article  Google Scholar 

  41. Xue F-Q, Wang Y-L, Wang W-H, Wang X-D (2008) Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim Acta 53:6636–6642. doi:10.1016/j.electacta.2008.04.040

    Article  Google Scholar 

  42. Fang B, Iwasa S, Wei Y, Arai T, Kumagai M (2002) A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application. Electrochim Acta 47:3971–3976. doi:10.1016/S0013-4686(02)00370-5

    Article  Google Scholar 

  43. Bartolozzi M (1989) Development of redox flow batteries. A historical bibliography. J Power Sources 27:219–234. doi:10.1016/0378-7753(89)80037-0

    Article  Google Scholar 

  44. Hagedorn N (1984) NASA redox storage system development project. NASA-TM-83677

    Google Scholar 

  45. Zhao P, Zhang H, Zhou H, Yi B (2005) Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim Acta 51:1091–1098. doi:10.1016/j.electacta.2005.06.008

    Article  Google Scholar 

  46. Scamman DP, Reade GW, Roberts EPL (2009) Numerical modelling of a bromide–polysulphide redox flow battery: Part 1: modelling approach and validation for a pilot-scale system. J Power Sources 189:1220–1230. doi:10.1016/j.jpowsour.2009.01.071

    Article  Google Scholar 

  47. Scamman DP, Reade GW, Roberts EPL (2009) Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: evaluation of a utility-scale system. J Power Sources 189:1231–1239. doi:10.1016/j.jpowsour.2009.01.076

    Article  Google Scholar 

  48. Sum E, Rychcik M, Skyllas-kazacos M (1985) Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 16:85–95. doi:10.1016/0378-7753(85)80082-3

    Article  Google Scholar 

  49. Sum E, Skyllas-Kazacos M (1985) A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 15:179–190. doi:10.1016/0378-7753(85)80071-9

    Article  Google Scholar 

  50. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058. doi:10.1149/1.2108706

    Article  Google Scholar 

  51. Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W (2013) Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett 13:1330–1335. doi:10.1021/nl400223v

    Article  Google Scholar 

  52. Li B, Gu M, Nie Z, Wei X, Wang C, Sprenkle V, Wang W (2014) Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett 14:158–165. doi:10.1021/nl403674a

    Article  Google Scholar 

  53. Kazacos M, Cheng M, Skyllas-Kazacos M (1990) Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 20:463–467. doi:10.1007/BF01076057

    Article  Google Scholar 

  54. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400. doi:10.1002/aenm.201100008

    Article  Google Scholar 

  55. Kim S, Thomsen E, Xia G, Nie Z, Bao J, Recknagle K, Wang W, Viswanathan V, Luo Q, Wei X, Crawford A, Coffey G, Maupin G, Sprenkle V (2013) 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J Power Sources 237:300–309. doi:10.1016/j.jpowsour.2013.02.045

    Article  Google Scholar 

  56. Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003–2019. doi:10.1039/C0EE00731E

    Article  Google Scholar 

  57. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195–198. doi:10.1038/nature12909

    Article  Google Scholar 

  58. Huskinson B, Marshak MP, Gerhardt MR, Aziz MJ (2014) Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage. ECS Trans 61:27–30. doi:10.1149/06137.0027ecst

    Article  Google Scholar 

  59. Chambers JQ (1974) Electrochemistry of quinones. In: Patai S (ed) The chemistry of the quinonoid compounds Part 1, Chap. 14. Wiley, New York

    Google Scholar 

  60. Bailey SI, Ritchie IM (1985) A cyclic voltammetric study of the aqueous electrochemistry of some quinones. Electrochim Acta 30:3–12. doi:10.1016/0013-4686(85)80051-7

    Article  Google Scholar 

  61. Huskinson B, Nawar S, Gerhardt MR, Aziz MJ (2013) Novel quinone-based couples for flow batteries. ECS Trans 53:101–105. doi:10.1149/05307.0101ecst

    Article  Google Scholar 

  62. Xu Y, Wen Y-H, Cheng J, Cao G-P, Yang Y-S (2010) A study of tiron in aqueous solutions for redox flow battery application. Electrochim Acta 55:715–720. doi:10.1016/j.electacta.2009.09.031

    Article  Google Scholar 

  63. Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR (2014) An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J Electrochem Soc 161:A1371–A1380. doi:10.1149/2.1001409jes

    Article  Google Scholar 

  64. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418. doi:10.1021/cr030203g

    Article  Google Scholar 

  65. Cappillino PJ, Pratt HD, Hudak NS, Tomson NC, Anderson TM, Anstey MR (2014) Application of redox non-innocent ligands to non-aqueous flow battery electrolytes. Adv Energy Mater 4:n/a–n/a. doi:10.1002/aenm.201300566

  66. Sleightholme AES, Shinkle AA, Liu Q, Li Y, Monroe CW, Thompson LT (2011) Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J Power Sources 196:5742–5745. doi:10.1016/j.jpowsour.2011.02.020

    Article  Google Scholar 

  67. Chakrabarti MH, Dryfe RAW, Roberts EPL (2007) Evaluation of electrolytes for redox flow battery applications. Electrochim Acta 52:2189–2195. doi:10.1016/j.electacta.2006.08.052

    Article  Google Scholar 

  68. Zhang D, Lan H, Li Y (2012) The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery. J Power Sources 217:199–203. doi:10.1016/j.jpowsour.2012.06.038

    Article  Google Scholar 

  69. Shinkle AA, Sleightholme AES, Griffith LD, Thompson LT, Monroe CW (2012) Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. J Power Sources 206:490–496. doi:10.1016/j.jpowsour.2010.12.096

    Article  Google Scholar 

  70. Mun J, Lee M-J, Park J-W, Oh D-J, Lee D-Y, Doo S-G (2012) Non-aqueous redox flow batteries with nickel and iron tris(2,2′-bipyridine) complex electrolyte. Electrochem Solid-State Lett 15:A80–A82. doi:10.1149/2.033206esl

    Article  Google Scholar 

  71. Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T (1988) A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. J Appl Electrochem 18:909–914. doi:10.1007/BF01016050

    Article  Google Scholar 

  72. Chakrabarti MH, Roberts EPL, Bae C, Saleem M (2011) Ruthenium based redox flow battery for solar energy storage. Energy Convers Manage 52:2501–2508. doi:10.1016/j.enconman.2011.01.012

    Article  Google Scholar 

  73. Liu Q, Sleightholme AES, Shinkle AA, Li Y, Thompson LT (2009) Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem Commun 11:2312–2315. doi:10.1016/j.elecom.2009.10.006

    Article  Google Scholar 

  74. Liu Q, Shinkle AA, Li Y, Monroe CW, Thompson LT, Sleightholme AES (2010) Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem Commun 12:1634–1637. doi:10.1016/j.elecom.2010.09.013

    Article  Google Scholar 

  75. Shinkle AA, Sleightholme AES, Thompson LT, Monroe CW (2011) Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. J Appl Electrochem 41:1191–1199. doi:10.1007/s10800-011-0314-z

    Article  Google Scholar 

  76. Shinkle AA, Pomaville TJ, Sleightholme AES, Thompson LT, Monroe CW (2014) Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. J Power Sources 248:1299–1305. doi:10.1016/j.jpowsour.2013.10.034

    Article  Google Scholar 

  77. Lee D-Y, Lee M-J, Park J-W, Oh D-J, Mun J-Y, Doo S-G (2011) Aromatic ligand coordinated redox couples & their application into redox flow batteries. The International Flow Battery Forum 2011 Edinburgh

    Google Scholar 

  78. Gagne RR, Koval CA, Lisensky GC (1980) Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 19:2854–2855. doi:10.1021/ic50211a080

    Article  Google Scholar 

  79. Wei X, Cosimbescu L, Xu W, Hu JZ, Vijayakumar M, Feng J, Hu MY, Deng X, Xiao J, Liu J, Sprenkle V, Wang W (2014) Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species. Adv Energy Mater n/a–n/a. doi:10.1002/aenm.201400678

  80. Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2:742–769. doi:10.1002/aenm.201100795

    Article  Google Scholar 

  81. Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280. doi:10.1039/c3ee40709h

    Article  Google Scholar 

  82. Chen Z, Qin Y, Amine K (2009) Redox shuttles for safer lithium-ion batteries. Electrochim Acta 54:5605–5613. doi:10.1016/j.electacta.2009.05.017

    Article  Google Scholar 

  83. Brushett FR, Vaughey JT, Jansen AN (2012) An all-organic non-aqueous lithium-ion redox flow battery. Adv Energy Mater 2:1390–1396. doi:10.1002/aenm.201200322

    Article  Google Scholar 

  84. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394. doi:10.1016/j.jpowsour.2006.07.074

    Article  Google Scholar 

  85. Zhang L, Zhang Z, Redfern PC, Curtiss LA, Amine K (2012) Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy Environ Sci 5:8204–8207. doi:10.1039/C2EE21977H

    Article  Google Scholar 

  86. Su L, Ferrandon M, Kowalski JA, Vaughey JT, Brushett FR (2014) Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform. J Electrochem Soc 161:A1905–A1914. doi:10.1149/2.0811412jes

    Article  Google Scholar 

  87. Wang W, Xu W, Cosimbescu L, Choi D, Li L, Yang Z (2012) Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery. Chem Commun 48:6669–6671. doi:10.1039/C2CC32466K

    Article  Google Scholar 

  88. Bachman JE, Curtiss LA, Assary RS (2014) Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J Phys Chem A. doi:10.1021/jp5060777

    MATH  Google Scholar 

  89. Hernández-Burgos K, Burkhardt SE, Rodríguez-Calero GG, Hennig RG, Abruña HD (2014) Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect. J Phys Chem C 118:6046–6051. doi:10.1021/jp4117613

    Article  Google Scholar 

  90. Hernández-Burgos K, Rodríguez-Calero GG, Zhou W, Burkhardt SE, Abruña HD (2013) Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J Am Chem Soc 135:14532–14535. doi:10.1021/ja407273c

    Article  Google Scholar 

  91. Nishide H, Koshika K, Oyaizu K (2009) Environmentally benign batteries based on organic radical polymers. Pure Appl Chem 81:1961–1970. doi:10.1351/PAC-CON-08-12-03

    Article  Google Scholar 

  92. Suga T, Nishide H (2011) Rechargeable batteries using robust but redox active organic radicals. In: Hicks R (ed) Stable radicals: fundamentals and applied aspects of odd-electron compounds, Chap. 14, 1st edn. Wiley, New York

    Google Scholar 

  93. Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns EJ (2006) Electrochemical and spectroscopic measurements for stable nitroxyl radicals. Electrochim Acta 52:921–927. doi:10.1016/j.electacta.2006.06.028

    Article  Google Scholar 

  94. Buhrmester C, Moshurchak LM, Wang RL, Dahn JR (2006) The use of 2,2,6,6-tetramethylpiperinyl-oxides and derivatives for redox shuttle additives in Li-ion cells. J Electrochem Soc 153:A1800–A1804. doi:10.1149/1.2221860

    Article  Google Scholar 

  95. Li Z, Li S, Liu S, Huang K, Fang D, Wang F, Peng S (2011) Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide. Electrochem Solid-State Lett 14:A171–A173. doi:10.1149/2.012112esl

    Article  Google Scholar 

  96. Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W (2014) TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv Mater 26:7649–7653. doi:10.1002/adma.201403746

    Article  Google Scholar 

  97. Thaller L (1974) Electrically rechargeable redox flow cells. NASA-TM X-71540

    Google Scholar 

  98. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453. doi:10.1016/j.jpowsour.2011.12.026

    Article  Google Scholar 

  99. Darling RM, Perry ML (2014) The influence of electrode and channel configurations on flow battery performance. J Electrochem Soc 161:A1381–A1387. doi:10.1149/2.0941409jes

    Article  Google Scholar 

  100. Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516. doi:10.1002/aenm.201100152

    Article  Google Scholar 

  101. Li Z, Smith KC, Dong Y, Baram N, Fan FY, Xie J, Limthongkul P, Carter WC, Chiang Y-M (2013) Aqueous semi-solid flow cell: demonstration and analysis. Phys Chem Chem Phys 15:15833–15839. doi:10.1039/C3CP53428F

    Article  Google Scholar 

  102. Fan FY, Woodford WH, Li Z, Baram N, Smith KC, Helal A, McKinley GH, Carter WC, Chiang Y-M (2014) Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett 14:2210–2218. doi:10.1021/nl500740t

    Article  Google Scholar 

  103. Bradley CS (1885) Secondary battery. US Patent 312,802, 24 Feb 1885

    Google Scholar 

  104. Barnartt S, Forejt DA (1964) Bromine-zinc secondary cells. J Electrochem Soc 111:1201–1204. doi:10.1149/1.2425960

    Article  Google Scholar 

  105. Lim HS, Lackner AM, Knechtli RC (1977) Zinc-bromine secondary battery. J Electrochem Soc 124:1154–1157. doi:10.1149/1.2133517

    Article  Google Scholar 

  106. Pavlov D, Papazov G, Gerganska M (1991) Battery energy storage systems. The United Nations Educational, Scientific and Cultural Organization, Regional Office for Science and Technology for Europe, Technical Report No. 7

    Google Scholar 

  107. http://www.zbbenergy.com/products/flow-battery/. Accessed 30 Sept 2014

  108. Adams GB (1979) Electrically rechargeable battery. US Patent 4,180,623, 25 Dec 1979

    Google Scholar 

  109. Magnani NJ, Clark RP, Braithwaite JW, Bush DM, Butler PC, Freese JM, Grothaus KR, Murphy KD, Shoemaker PE(1985) Exploratory battery technology development and testing report for 1985. Sandia National Laboratories

    Google Scholar 

  110. Clarke R, Dougherty B, Harrison S, Millington P, Mohanta S (2004) Cerium batteries. US Patent Application Publication 2004/0202925 A1, 14 Oct 2004

    Google Scholar 

  111. Clarke R, Dougherty B, Harrison S, Millington J, Mohanta S (2006) Battery with bifunctional electrolyte. US Patent Application Publication 2006/0063065 A1, 23 Mar 2006

    Google Scholar 

  112. Hazza A, Pletcher D, Wills R (2004) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part I. Preliminary studies. Phys Chem Chem Phys 6:1773. doi:10.1039/b401115e

    Article  Google Scholar 

  113. Pletcher D, Wills R (2004) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part II. Flow cell studies. Phys Chem Chem Phys 6:1779–1785

    Article  Google Scholar 

  114. Pletcher D, Wills R (2005) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part III. The influence of conditions on battery performance. J Power Sources 149:96–102. doi:10.1016/j.jpowsour.2005.01.048

    Article  Google Scholar 

  115. Hazza A, Pletcher D, Wills R (2005) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part IV. The influence of additives. J Power Sources 149:103–111. doi:10.1016/j.jpowsour.2005.01.049

    Article  Google Scholar 

  116. Pletcher D, Zhou H, Kear G, Low CTJ, Walsh FC, Wills RGA (2008) A novel flow battery: a lead-acid battery based on an electrolyte with soluble lead(II) Part V. Studies of the lead negative electrode. J Power Sources 180:621–629. doi:10.1016/j.jpowsour.2008.02.024

    Article  Google Scholar 

  117. Pletcher D, Zhou H, Kear G, Low CTJ, Walsh FC, Wills RGA (2008) A novel flow battery: a lead-acid battery based on an electrolyte with soluble lead(II) Part VI. Studies of the lead dioxide positive electrode. J Power Sources 180:630–634. doi:10.1016/j.jpowsour.2008.02.025

    Article  Google Scholar 

  118. Li X, Pletcher D, Walsh FC (2009) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VII. Further studies of the lead dioxide positive electrode. Electrochim Acta 54:4688–4695. doi:10.1016/j.electacta.2009.03.075

    Article  Google Scholar 

  119. Collins J, Kear G, Li X, Low CTJ, Pletcher D, Tangirala R, Stratton-Campbell D, Walsh FC, Zhang C (2010) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm × 10 cm flow cell. J Power Sources 195:1731–1738. doi:10.1016/j.jpowsour.2009.09.044

    Article  Google Scholar 

  120. Collins J, Li X, Pletcher D, Tangirala R, Stratton-Campbell D, Walsh FC, Zhang C (2010) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part IX: Electrode and electrolyte conditioning with hydrogen peroxide. J Power Sources 195:2975–2978. doi:10.1016/j.jpowsour.2009.10.109

    Article  Google Scholar 

  121. Verde MG, Carroll KJ, Wang Z, Sathrum A, Meng YS (2013) Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries. Energy Environ Sci 6:1573. doi:10.1039/c3ee40631h

    Article  Google Scholar 

  122. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. doi:10.1039/C3EE40795K

    Article  Google Scholar 

  123. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.1038/35104644

    Article  Google Scholar 

  124. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2011) A critical review of Li/air batteries. J Electrochem Soc 159:R1–R30. doi:10.1149/2.086202jes

    Article  Google Scholar 

  125. Lu Y, Goodenough JB, Kim Y (2011) Aqueous cathode for next-generation alkali-ion batteries. J Am Chem Soc 133:5756–5759. doi:10.1021/ja201118f

    Article  Google Scholar 

  126. Lu Y, Goodenough JB (2011) Rechargeable alkali-ion cathode-flow battery. J Mater Chem 21:10113–10117. doi:10.1039/C0JM04222F

    Article  Google Scholar 

  127. Wang Y, He P, Zhou H (2012) Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv Energy Mater 2:770–779. doi:10.1002/aenm.201200100

    Article  Google Scholar 

  128. Zhao Y, Byon HR (2013) High-performance lithium-iodine flow battery. Adv Energy Mater 3:1630–1635. doi:10.1002/aenm.201300627

    Article  Google Scholar 

  129. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29. doi:10.1038/nmat3191

    Article  Google Scholar 

  130. Su Y-S, Fu Y, Cochell T, Manthiram A (2013) A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat Commun. doi:10.1038/ncomms3985

  131. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev doi:10.1021/cr500062v

  132. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126:523–527. doi:10.1149/1.2129079

    Article  Google Scholar 

  133. Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46:1125–1134. doi:10.1021/ar300179v

    Article  Google Scholar 

  134. Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. US Patent 7,354,680 B2, 8 April 2008

    Google Scholar 

  135. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:A694–A702. doi:10.1149/1.3148721

    Article  Google Scholar 

  136. Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558. doi:10.1039/C3EE00072A

    Article  Google Scholar 

  137. Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR (2014) Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ Sci doi:10.1039/C4EE02158D

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, and from the Massachusetts Institute of Technology Energy Initiative’s (MITei) Seed Fund Program. In addition, we thank Jarrod Milshtein and Apurba Sakti for stimulating discussions and for assistance in figure development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikile R. Brushett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Su, L., Kowalski, J.A., Carroll, K.J., Brushett, F.R. (2015). Recent Developments and Trends in Redox Flow Batteries. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics