Skip to main content

Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future

  • Chapter
  • First Online:
Book cover Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Metal–oxygen batteries have attracted significant attention due to the high theoretical capacities of some chemistries. This chapter summarizes the history of metal-oxygen batteries and reviews the current status of room-temperature, non-aqueous systems. Emphasis is given to the operating mechanisms, unsolved challenges, and new approaches associated with the Li–O2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vergnes M (1860) Improvement in the construction of voltaic gas-batteries. US Patent 28317

    Google Scholar 

  2. Shao Y, Ding F, Xiao J et al (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23:987–1004. doi:10.1002/adfm.201200688

    Google Scholar 

  3. Heise GW, Schumacher EA (1932) An air-depolarized primary cell with caustic alkali electrolyte. J Electrochem Soc 62:383–391. doi:10.1149/1.3493794

    Google Scholar 

  4. Reddy TB, Linden D (2011) Handbook of batteries. McGraw-Hill Companies, New York

    Google Scholar 

  5. Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196. doi:10.1039/b708013c

    Google Scholar 

  6. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York

    Google Scholar 

  7. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132. doi:10.1016/j.jpowsour.2008.03.075

    Google Scholar 

  8. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199. doi:10.1016/j.rser.2009.08.002

    Google Scholar 

  9. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5. doi:10.1149/1.1836378

    Google Scholar 

  10. Toni JEA, McDonald GD, Elliott WE (1966) Lithium-moist air battery. Fort Belvoir, Virginia

    Google Scholar 

  11. Blurton KF, Sammells AF (1979) Metal/air review batteries: their status and potential—a review. J Power Sources 4:263–279. doi:10.1016/0378-7753(79)80001-4

    Google Scholar 

  12. Semkow KW, Sammells AF (1987) A lithium oxygen secondary battery. J Electrochem Soc 134:2084–2085. doi:10.1149/1.2100826

    Google Scholar 

  13. Abraham KM (2008) A brief history of non-aqueous metal-air batteries. ECS Trans 3:67–71. doi:10.1149/1.2838193

    Google Scholar 

  14. Zhang T, Zhou H (2013) A reversible long-life lithium-air battery in ambient air. Nat Commun 4:1817. doi:10.1038/ncomms2855

    Google Scholar 

  15. Imanishi N, Luntz AC, Bruce P (2014) The lithium air battery: fundamentals. Springer, Berlin

    Google Scholar 

  16. Lu J, Li L, Park J-B et al (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114:5611–5640. doi:10.1021/cr400573b

    Google Scholar 

  17. Wang J, Li Y, Sun X (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–oxygen batteries. Nano Energy 2:443–467. doi:10.1016/j.nanoen.2012.11.014

    Google Scholar 

  18. Li Q, Cao R, Cho J, Wu G (2014) Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Phys Chem Chem Phys. doi:10.1039/C4CP00225C

  19. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822. doi:10.1039/c3cp54165g

    Google Scholar 

  20. Yuan J, Yu J-S, Sundén B (2015) Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J Power Sources 278:352–369. doi:10.1016/j.jpowsour.2014.12.078

    Google Scholar 

  21. Guo Z, Dong X, Yuan S et al (2014) Humidity effect on electrochemical performance of Li–O2 batteries. J Power Sources 264:1–7. doi:10.1016/j.jpowsour.2014.04.079

    Google Scholar 

  22. Trahan MJ, Mukerjee S, Plichta EJ et al (2012) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267. doi:10.1149/2.048302jes

    Google Scholar 

  23. Adams BD, Radtke C, Black R et al (2013) Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci 6:1772. doi:10.1039/c3ee40697k

    Google Scholar 

  24. Geaney H, O’Connell J, Holmes JD, O’Dwyer C (2014) On the use of gas diffusion layers as current collectors in Li–O2 battery cathodes. J Electrochem Soc 161:A1964–A1968. doi:10.1149/2.0021414jes

    Google Scholar 

  25. Hougton R, Gouty D, Allinson J et al (2012) Monitoring the location of cathode-reactions in Li–O2 batteries. J Electrochem Soc 162:A3126–A3132. doi:10.1149/2.0191502jes

    Google Scholar 

  26. Gallagher KG, Goebel S, Greszler T et al (2014) Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ Sci. doi:10.1039/c3ee43870h

    Google Scholar 

  27. Adams J, Karulkar M (2012) Bipolar plate cell design for a lithium air battery. J Power Sources 199:247–255. doi:10.1016/j.jpowsour.2011.10.041

    Google Scholar 

  28. Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585. doi:10.1038/nchem.1376

    Google Scholar 

  29. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4:2952–2958. doi:10.1039/c1ee01496j

    Google Scholar 

  30. Sun B, Huang X, Chen S et al (2014) Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett 14:3145–3152. doi:10.1021/nl500397y

    Google Scholar 

  31. Kwabi DG, Ortiz-Vitoriano N, Freunberger Sa et al (2014) Materials challenges in rechargeable lithium–air batteries. MRS Bull 39:443–452. doi:10.1557/mrs.2014.87

    Google Scholar 

  32. Lu J, Lei Y, Lau KC et al (2013) A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat Commun 4:2383. doi:10.1038/ncomms3383

    Google Scholar 

  33. Yilmaz E, Yogi C, Yamanaka K et al (2013) Promoting formation of noncrystalline Li2O2 in Li–O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684. doi:10.1021/nl4020952

    Google Scholar 

  34. Meini S, Piana M, Tsiouvaras N et al (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem Solid-State Lett 15:A45–A48. doi:10.1149/2.005204esl

    Google Scholar 

  35. Meini S, Solchenbach S, Piana M, Gasteiger Ha (2014) The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2O2 in Li–O2 batteries. J Electrochem Soc 161:A1306–A1314. doi:10.1149/2.0621409jes

    Google Scholar 

  36. Aetukuri NB, McCloskey BD, García JM et al (2014) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56. doi: 10.1038/nchem.2132

  37. Mitchell RR, Gallant BM, Shao-Horn Y, Thompson CV (2013) Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J Phys Chem Lett 4:1060–1064. doi:10.1021/jz4003586

    Google Scholar 

  38. Viswanathan V, Thygesen KS, Hummelshøj JS et al (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J Chem Phys 135:214704. doi:10.1063/1.3663385

    Google Scholar 

  39. Griffith LD, Sleightholme AES, Mansfield JF et al (2015) Correlating Li/O2 Cell Capacity and Product Morphology with Discharge Current. ACS Appl Mater Interfaces 7:7670–7678. doi:10.1021/acsami.5b00574

  40. Jung H-G, Kim H-S, Park J-B et al (2012) A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett 1:2–4. doi:10.1021/nl302066d

    Google Scholar 

  41. Zhai D, Wang H-H, Yang J et al (2013) Disproportionation in Li–O2 batteries based on a large surface area carbon cathode. J Am Chem Soc 135:15364–15372. doi:10.1021/ja403199d

    Google Scholar 

  42. Xia C, Waletzko M, Peppler K, Janek J (2013) Silica nanoparticles as structural promoters for oxygen cathodes of lithium–oxygen batteries. J Phys Chem C 117:19897–19904. doi:10.1021/jp407011d

    Google Scholar 

  43. Xu J-J, Wang Z-L, Xu D et al (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium–oxygen batteries. Nat Commun 4:2438. doi:10.1038/ncomms3438

    Google Scholar 

  44. Lu J, Cheng L, Lau KC et al (2014) Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat Commun 5:4895. doi:10.1038/ncomms5895

    Google Scholar 

  45. Xia C, Waletzko M, Chen L et al (2014) Evolution of Li2O2 growth and its effect on kinetics of Li–O2 batteries. ACS Appl Mater Interfaces 6:12083–12092. doi:10.1021/am5010943

    Google Scholar 

  46. Schwenke KU, Metzger M, Restle T et al (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J Electrochem Soc 162:A573–A584. doi:10.1149/2.0201504jes

    Google Scholar 

  47. Aetukuri NB, McCloskey BD, García JM et al (2014) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem. doi:10.1038/nchem.2132

    Google Scholar 

  48. Kosma Va, Beltsios KG (2013) Simple solution routes for targeted carbonate phases and intricate carbonate and silicate morphologies. Mater Sci Eng, C 33:289–297. doi:10.1016/j.msec.2012.08.042

    Google Scholar 

  49. Felker FC, Kenar JA, Fanta GF, Biswas A (2013) Comparison of microwave processing and excess steam jet cooking for spherulite production from amylose–fatty acid inclusion complexes. Starch 65:864–874. doi:10.1002/star.201200218

    Google Scholar 

  50. Horstmann B, Gallant B, Mitchell R et al (2013) Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J Phys Chem Lett 4:4217–4222

    Google Scholar 

  51. Morse JW, Casey WH (1988) Ostwald processes and mineral paragenesis in sediments. Am J Sci 288:537–560

    Google Scholar 

  52. Feenstra TP, De Bruyn PL (1981) The Ostwald rule of stages in precipitation from highly supersaturated solutions: a model and its application to the formation of the nonstoichiometric amorphous calcium phosphate precursor phase. J Colloid Interface Sci 84:66–72

    Google Scholar 

  53. Ostwald W (1897) Studien über die Umwandlung fester Körper. Z Phys Chem 22:289–330

    Google Scholar 

  54. Tian F, Radin MD, Siegel DJ (2014) Enhanced charge transport in amorphous Li2O2. Chem Mater 26:2952–2959. doi:10.1021/cm5007372

    Google Scholar 

  55. Lau KC, Lu J, Luo X et al (2014) Implications of the unpaired spins in Li–O2 battery chemistry and electrochemistry: a minireview. Chempluschem 80:336–343. doi:10.1002/cplu.201402053

    Google Scholar 

  56. Vannerberg N-G (1962) Peroxides, superoxides, and ozonides of the metals of groups Ia, IIa, and IIb. Prog Inorg Chem. Wiley, Hoboken, pp 125–197

    Google Scholar 

  57. Lu J, Jung H-J, Lau KC et al (2013) Magnetism in lithium–oxygen discharge product. ChemSusChem 6:1196–1202. doi:10.1002/cssc.201300223

    Google Scholar 

  58. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134:1093–1103. doi:10.1021/ja208944x

    Google Scholar 

  59. Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85:081105. doi:10.1103/PhysRevB.85.081105

    Google Scholar 

  60. Radin MD, Siegel DJ (2013) Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries. Energy Environ Sci 6:2370–2379. doi:10.1039/c3ee41632a

    Google Scholar 

  61. Trahan MJ, Jia Q, Mukerjee S et al (2013) Cobalt phthalocyanine catalyzed lithium–air batteries. J Electrochem Soc 160:A1577–A1586. doi:10.1149/2.118309jes

    Google Scholar 

  62. Thapa AK, Hidaka Y, Hagiwara H et al (2011) Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in lithium–air battery. J Electrochem Soc 158:A1483. doi:10.1149/2.090112jes

    Google Scholar 

  63. Xu W, Xu K, Viswanathan VV et al (2011) Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J Power Sources 196:9631–9639. doi:10.1016/j.jpowsour.2011.06.099

    Google Scholar 

  64. Meini S, Tsiouvaras N, Schwenke KU et al (2013) Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Phys Chem Chem Phys 15:11478–11493. doi:10.1039/c3cp51112j

    Google Scholar 

  65. Mccloskey BD, Valery A, Luntz AC et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4:2989–2993. doi:10.1021/jz401659f

    Google Scholar 

  66. Freunberger S, Chen Y, Drewett NE et al (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed Engl 50:8609–8613. doi:10.1002/anie.201102357

    Google Scholar 

  67. Luntz AC, Viswanathan V, Voss J et al (2013) Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J Phys Chem Lett 4:3494–34997. doi:10.1021/jz401926f

    Google Scholar 

  68. Garcia-Lastra JM, Myrdal JSG, Christensen R et al (2013) DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li–Air batteries. J Phys Chem C 117:5568–5577. doi:10.1021/jp3107809

    Google Scholar 

  69. Lu Y-C, Gallant BM, Kwabi DG et al (2013) Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6:750. doi:10.1039/c3ee23966g

    Google Scholar 

  70. Safari M, Adams BD, Nazar LF (2014) Kinetics of oxygen reduction in aprotic Li–O2 cells: a model-based study. J Phys Chem Lett 5:3486–3491. doi:10.1021/jz5018202

    Google Scholar 

  71. Xue K, Mcturk E, Johnson L et al (2015) A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms 162:614–621. doi:10.1149/2.0121504jes

  72. Kang S, Mo Y, Ong SP, Ceder G (2013) A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem Mater 25:3328–3336. doi:10.1021/cm401720n

    Google Scholar 

  73. Gallant BM, Kwabi DG, Mitchell RR et al (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ Sci 6:2518. doi:10.1039/c3ee40998h

    Google Scholar 

  74. Radin MD, Monroe CW, Siegel DJ (2015) How dopants can enhance charge transport in Li2O2. Chem Mater 27:839–847. doi:10.1021/cm503874c

    Google Scholar 

  75. Malik R, Abdellahi A, Ceder G (2013) A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc 160:A3179–A3197. doi:10.1149/2.029305jes

    Google Scholar 

  76. Albertus P, Girishkumar G, McCloskey B et al (2011) Identifying capacity limitations in the Li/Oxygen battery using experiments and modeling. J Electrochem Soc 158:A343. doi:10.1149/1.3527055

    Google Scholar 

  77. Das SK, Xu S, Emwas A-H et al (2012) High energy lithium-oxygen batteries—transport barriers and thermodynamics. Energy Environ Sci 5:8927. doi:10.1039/c2ee22470d

    Google Scholar 

  78. Lu Y-C, Shao-Horn Y (2013) Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J Phys Chem Lett 4:93–99. doi:10.1021/jz3018368

    Google Scholar 

  79. Viswanathan V, Nørskov JK, Speidel A et al (2013) Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4:556–560. doi:10.1021/jz400019y

    Google Scholar 

  80. Gerbig O, Merkle R, Maier J (2013) Electron and ion transport in Li2O2. Adv Mater 25:3129–3133. doi:10.1002/adma.201300264

    Google Scholar 

  81. Radin MD (2014) First-principles and continuum modeling of charge transport in Li–O2 batteries. University of Michigan, Ann Arbor

    Google Scholar 

  82. Radin MD, Tian F, Siegel DJ (2012) Electronic structure of Li2O2 0001 surfaces. J Mater Sci 47:7564–7570. doi:10.1007/s10853-012-6552-6

    Google Scholar 

  83. Geng WT, He BL, Ohno T (2013) Grain boundary induced conductivity in Li2O2. J Phys Chem C 117:25222–25228. doi:10.1021/jp405315k

    Google Scholar 

  84. Zhao Y, Ban C, Kang J et al (2012) P-type doping of lithium peroxide with carbon sheets. Appl Phys Lett 101:023903. doi:10.1063/1.4733480

    Google Scholar 

  85. Zhu D, Zhang L, Song M et al (2013) Intermittent operation of the aprotic Li–O2 battery: the mass recovery process upon discharge interval. J Solid State Electrochem 17:2539–2544. doi:10.1007/s10008-013-2116-1

    Google Scholar 

  86. Sahapatsombut U, Cheng H, Scott K (2013) Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery. J Power Sources 227:243–253. doi:10.1016/j.jpowsour.2012.11.053

    Google Scholar 

  87. Nimon VY, Visco SJ, De Jonghe LC et al (2013) Modeling and experimental study of porous carbon cathodes in Li–O2 cells with non-aqueous electrolyte. ECS Electrochem Lett 2:A33–A35. doi:10.1149/2.004304eel

    Google Scholar 

  88. Liu J, Monroe CW (In preparation)

    Google Scholar 

  89. Chen XJ, Bevara VV, Andrei P et al (2014) Combined effects of oxygen diffusion and electronic resistance in Li–Air batteries with carbon nanofiber cathodes. J Electrochem Soc 161:A1877–A1883. doi:10.1149/2.0721412jes

    Google Scholar 

  90. Hummelshøj JS, Luntz AC, Nørskov JK (2013) Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry. J Chem Phys 138:034703. doi:10.1063/1.4773242

    Google Scholar 

  91. Mo Y, Ong S, Ceder G (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys Rev B 84:205446. doi:10.1103/PhysRevB.84.205446

    Google Scholar 

  92. Lee B, Seo D-H, Lim H-D et al (2014) First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem Mater 26:1048–1055. doi:10.1021/cm403163c

    Google Scholar 

  93. Leung K (2013) Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J Phys Chem C 117:1539–1547. doi:10.1021/jp308929a

    Google Scholar 

  94. Mizuno F, Nakanishi S, Kotani Y et al (2010) Rechargeable Li–Air batteries with carbonate-based liquid electrolytes. Electrochemistry 78:403–405

    Google Scholar 

  95. McCloskey B, Bethune D, Shelby R et al (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery. J Phys Chem Lett 2:1161–1166

    Google Scholar 

  96. Laino T, Curioni A (2012) A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chem—Eur J 18:3510–3520. doi:10.1002/chem.201103057

    Google Scholar 

  97. McCloskey BD, Bethune DS, Shelby RM et al (2012) Limitations in rechargeability of Li–O2 batteries and possible origins. J Phys Chem Lett 3:3043–3047

    Google Scholar 

  98. Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) Influence of lithium salts on the discharge chemistry of Li–Air cells. J Phys Chem Lett 3:1242–1247. doi:10.1021/jz300430s

    Google Scholar 

  99. Du P, Lu J, Lau KC et al (2013) Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Phys Chem Chem Phys 15:5572–5581. doi:10.1039/c3cp50500f

    Google Scholar 

  100. Younesi R, Hahlin M, Bjo F et al (2013) Li–O2 battery degradation by lithium peroxide (Li2O2): a model study. Chem Mater 25:77–84. doi:10.1021/cm303226g

    Google Scholar 

  101. Mccloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001. doi:10.1021/jz300243r

    Google Scholar 

  102. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135:494–500. doi:10.1021/ja310258x

    Google Scholar 

  103. Nasybulin E, Xu W, Engelhard MH et al (2013) Stability of polymer binders in Li–O2 batteries. J Power Sources 243:899–907. doi:10.1016/j.jpowsour.2013.06.097

    Google Scholar 

  104. Shui J-L, Wang H-H, Liu D-J (2013) Degradation and revival of Li–O2 battery cathode. Electrochem Commun 34:45–47. doi:10.1016/j.elecom.2013.05.020

    Google Scholar 

  105. Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li–O2 battery. Science 80(337):563–566. doi:10.1126/science.1223985

    Google Scholar 

  106. Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16:18658–18674. doi:10.1039/C4CP02533D

    Google Scholar 

  107. Lau KC, Lu J, Low J et al (2014) Investigation of the decomposition mechanism of lithium bis(oxalate)borate (LiBOB) salt in the electrolyte of an aprotic Li–O2 battery. Energy Technol 2:348–354. doi:10.1002/ente.201300164

    Google Scholar 

  108. Bryantsev V (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2:379–383

    Google Scholar 

  109. Beyer H, Meini S, Tsiouvaras N et al (2013) Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries. Phys Chem Chem Phys 15:11025–11037. doi:10.1039/c3cp51056e

    Google Scholar 

  110. Bryantsev VS, Faglioni F (2012) Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. J Phys Chem A 116:7128–7138. doi:10.1021/jp301537w

    Google Scholar 

  111. Zhu D, Zhang L, Song M et al (2013) Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li–O2 battery. J Solid State Electrochem 17:2865–2870. doi:10.1007/s10008-013-2202-4

    Google Scholar 

  112. Assary RS, Lau KC, Amine K et al (2013) Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li–O2 batteries. J Phys Chem C 117:8041–8049

    Google Scholar 

  113. Laino T, Curioni A (2013) Chemical reactivity of aprotic electrolytes on a solid Li2O2 surface: screening solvents for Li–air batteries. New J Phys 15:095009. doi:10.1088/1367-2630/15/9/095009

    Google Scholar 

  114. McCloskey B, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133:18038–18041

    Google Scholar 

  115. Harding JR, Lu Y, Shao-horn Y (2012) Evidence of catalyzed oxidation of Li2O2 for rechargeable Li–Air battery applications. Phys Chem Chem Phys 14:10540–10546. doi:10.1039/c2cp41761h

    Google Scholar 

  116. Cho MH, Trottier J, Gagnon C et al (2014) The effects of moisture contamination in the Li–O2 battery. J Power Sources 268:565–574. doi:10.1016/j.jpowsour.2014.05.148

    Google Scholar 

  117. Schwenke KU, Meini S, Wu X et al (2013) Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys Chem Chem Phys 15:11830–11839. doi:10.1039/c3cp51531a

    Google Scholar 

  118. Gowda SR, Brunet A, Wallraff GM, Mccloskey BD (2013) Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J Phys Chem Lett 4:276–279

    Google Scholar 

  119. Li F, Zhang T, Zhou H (2013) Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci 6:1125–1141. doi:10.1039/c3ee00053b

    Google Scholar 

  120. Xu W, Wang J, Ding F et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513. doi:10.1039/c3ee40795k

    Google Scholar 

  121. Assary RS, Lu J, Du P et al (2012) The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6:51–55. doi:10.1002/cssc.201200810

    Google Scholar 

  122. Shui J-L, Okasinski JS, Kenesei P et al (2013) Reversibility of anodic lithium in rechargeable lithium-oxygen batteries. Nat Commun 4:2255. doi:10.1038/ncomms3255

    Google Scholar 

  123. Roberts M, Younesi R, Richardson W et al (2014) Increased cycling efficiency of lithium anodes in dimethyl sulfoxide electrolytes for use in Li–O2 batteries. ECS Electrochem Lett 3:A62–A65. doi:10.1149/2.007406eel

    Google Scholar 

  124. Adams J, Karulkar M, Anandan V (2013) Evaluation and electrochemical analyses of cathodes for lithium-air batteries. J Power Sources 239:132–143. doi:10.1016/j.jpowsour.2013.03.140

    Google Scholar 

  125. Yoon DH, Park YJ (2014) Characterization of real cyclic performance of air electrode for Li–Air batteries. J Electroceram. doi:10.1007/s10832-014-9937-x

  126. Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) A stable cathode for the aprotic Li–O2 battery. Nat Mater 12:1–7. doi:10.1038/nmat3737

    Google Scholar 

  127. Chen Y, Freunberger SA, Peng Z et al (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494. doi:10.1038/NCHEM.1646

    Google Scholar 

  128. Tan P, Shyy W, An L et al (2014) A gradient porous cathode for non-aqueous lithium–air batteries leading to a high capacity. Electrochem Commun 46:111–114. doi:10.1016/j.elecom.2014.06.026

    Google Scholar 

  129. Black R, Lee J-H, Adams B et al (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed Engl 52:392–396. doi:10.1002/anie.201205354

    Google Scholar 

  130. Kim DS, Park YJ (2014) Effect of multi-catalysts on rechargeable Li–Air batteries. J Alloys Compd 591:164–169. doi:10.1016/j.jallcom.2013.12.208

    Google Scholar 

  131. Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li–Air batteries. Energy Environ Sci 6:2302. doi:10.1039/c3ee40702k

    Google Scholar 

  132. Thackeray MM, Chan MKY, Trahey L et al (2013) Vision for designing high-energy, hybrid Li Ion/Li–O2 cells. J Phys Chem Lett 4:3607–3611

    Google Scholar 

  133. Trahey L, Karan NK, Chan MKY et al (2012) Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li–O2 cells. Adv Energy Mater 3:75–84. doi:10.1002/aenm.201200037

    Google Scholar 

  134. Kirklin S, Chan M, Trahey L et al (2014) High-throughput screening of high-capacity electrodes for hybrid Li-ion/Li–O2 cells. Phys Chem Chem Phys 16:22073–22082. doi:10.1039/C4CP03597F

    Google Scholar 

  135. Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Bioeng 17:257–321

    Google Scholar 

  136. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. doi:10.1080/0192623029016672

    Google Scholar 

  137. Kim BG, Kim S, Lee H, Choi JW (2014) Wisdom from the human eye: a synthetic melanin radical scavenger for improved cycle life of Li–O2 battery. Chem Mater 26:4757–4764

    Google Scholar 

  138. Wang Y, Zheng D, Yang X-Q, Qu D (2011) High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives. Energy Environ Sci 4:3697. doi:10.1039/c1ee01556g

    Google Scholar 

  139. Li XL, Huang J, Faghri A (2014) Modeling study of a Li–Air battery with an active cathode. Energy 1–12. doi:10.1016/j.energy.2014.12.062

  140. Nemanick EJ, Hickey RP (2014) The effects of O2 pressure on Li–O2 secondary battery discharge capacity and rate capability. J Power Sources 252:248–251. doi:10.1016/j.jpowsour.2013.12.016

    Google Scholar 

  141. Zhang Y, Zhang H, Li J et al (2013) The use of mixed carbon materials with improved oxygen transport in a lithium–air battery. J Power Sources 240:390–396. doi:10.1016/j.jpowsour.2013.04.018

    Google Scholar 

  142. Balaish M, Kraytsberg A, Ein-Eli Y (2013) Realization of an artificial three-phase reaction zone in a Li–Air battery. ChemElectroChem n/a–n/a. doi:10.1002/celc.201300055

  143. Li C, Fontaine O, Freunberger SA et al (2014) Aprotic Li–O2 battery: influence of complexing agents on oxygen reduction in an aprotic solvent. J Phys Chem C 118:3393–3401. doi:10.1021/jp4093805

    Google Scholar 

  144. Hartmann P, Bender CL, Vračar M et al (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232. doi:10.1038/nmat3486

    Google Scholar 

  145. Ha S, Kim J-K, Choi A et al (2014) Sodium-metal halide and sodium-air batteries. ChemPhysChem 15:1971–1982. doi:10.1002/cphc.201402215

    Google Scholar 

  146. Liu W, Sun Q, Yang Y et al (2013) An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem Comm 49:1951–1953. doi:10.1039/c3cc00085k

    Google Scholar 

  147. Ren X, Wu Y (2013) A low-overpotential potassium-oxygen battery based on potassium superoxide. J Am Chem Soc 135:2923–2926. doi:10.1021/ja312059q

    Google Scholar 

  148. Shiga T, Hase Y, Yagi Y et al (2014) Catalytic cycle employing a TEMPO—anion complex to obtain a secondary Mg–O2 battery. J Phys Chem Lett 5:1648–1652. doi:10.1021/jz500602r

    Google Scholar 

  149. Shiga T, Hase Y, Kato Y et al (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun (Camb) 49:9152–9154. doi:10.1039/c3cc43477j

    Google Scholar 

  150. Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium-air battery based on ionic liquid electrolyte. J Power Sources 272:415–421. doi:10.1016/j.jpowsour.2014.08.056

    Google Scholar 

  151. Gruber PW, Medina PA, Keoleian GA et al (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15:760–775. doi:10.1111/j.1530-9290.2011.00359.x

    Google Scholar 

  152. Sangster J, Pelton A (1992) The Li–O (lithium-oxygen) system. J Phase Equilibria 13:296–299

    Google Scholar 

  153. Lau KC, Curtiss LA, Greeley J (2011) Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure. J Phys Chem C 115:23625–23633. doi:10.1021/jp206796h

  154. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. doi:10.1021/cr500049y

    Google Scholar 

  155. Lu YC, Kwabi DG, Yao KPC et al (2011) The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ Sci 4:2999–3007. doi:10.1039/c1ee01500a

    Google Scholar 

  156. Kim BG, Kim H-J, Back S et al (2014) Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci Rep 4:4225. doi:10.1038/srep04225

    Google Scholar 

  157. Hayashi K, Shima K, Sugiyama F (2013) A mixed aqueous/aproticssodium/air cell using a NASICON ceramic separator. J Electrochem Soc 160:A1467–A1472. doi:10.1149/2.067309jes

    Google Scholar 

  158. Downing BW (2012) Metal—air technology. Electrochem Technol Energy Storage Convers. doi:10.1002/9783527639496.ch6

  159. Cooper JF (1977) High performance metal/air fuel cells. OSTI ID: 7084912. doi:10.2172/7084912

  160. Hosseiny SS, Saakes M, Wessling M (2011) A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochem Commun 13:751–754. doi:10.1016/j.elecom.2010.11.025

    Google Scholar 

  161. Walker CW, Walker J (2012) Molybdenum/air battery and cell design. 2: US Patent 8148020 B2

    Google Scholar 

  162. Wagner OC (1969) Secondary cadmium-air cells. J Electrochem Soc 116:693. doi:10.1149/1.2412023

    Google Scholar 

  163. Egan DR, Ponce de León C, Wood RJK et al (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310. doi:10.1016/j.jpowsour.2013.01.141

    Google Scholar 

  164. Mori R (2014) A novel aluminium–air secondary battery with long-term stability. RSC Adv 4:1982. doi:10.1039/c3ra44659j

    Google Scholar 

  165. Zhong X, Zhang H, Liu Y et al (2012) High-capacity silicon-air battery in alkaline solution. ChemSusChem 5:177–180. doi:10.1002/cssc.201100426

    Google Scholar 

  166. Jiang R (2007) Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries. Rev Sci Instrum 78:072209. doi:10.1063/1.2755439

    Google Scholar 

  167. Inoishi A, Ju Y-W, Ida S, Ishihara T (2013) Mg-air oxygen shuttle batteries using a ZrO2-based oxide ion-conducting electrolyte. Chem Commun (Camb) 49:4691–4693. doi:10.1039/c3cc40880a

    Google Scholar 

  168. Pujare NU, Semkow KW, Sammells AF (1988) A calcium oxygen secondary battery. J Electrochem Soc 135:260–261. doi:10.1149/1.2095574

    Google Scholar 

  169. Zhao X, Gong Y, Li X et al (2013) A new solid oxide molybdenum–air redox battery. J Mater Chem A 1:14858. doi:10.1039/c3ta12726e

    Google Scholar 

  170. Zhao X, Li X, Gong Y et al (2013) A high energy density all solid-state tungsten-air battery. Chem Commun (Camb) 49:5357–5359. doi:10.1039/c3cc42075b

    Google Scholar 

  171. Zhao X, Li X, Gong Y et al (2014) A novel intermediate-temperature all ceramic iron–air redox battery: the effect of current density and cycle duration. RSC Adv 4:22621. doi:10.1039/c4ra02768j

    Google Scholar 

  172. Desclaux P, Nürnberger S, Stimming U (2010) Direct carbon fuel cells. In: Steinberge-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies. The Royal Society of Chemistry, Cambridge, p 190–211 doi:10.1039/9781849732109-00190

  173. Cohn G, Starosvetsky D, Hagiwara R et al (2009) Silicon–air batteries. Electrochem Commun 11:1916–1918. doi:10.1016/j.elecom.2009.08.015

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the U.S. National Science Foundation, grant no. CBET-1351482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Siegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radin, M.D., Siegel, D.J. (2015). Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics