Skip to main content

High Voltage Cathode Materials

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Owing to the progress in the field energy storage, new lithium insertion compounds are currently investigated as active cathode elements for high-voltage lithium-ion batteries  to improve the technology of the electric transportation. After preliminary considerations  dedicated to the principles governing LiBs and electron energies in the positive electrodes, this chapter addresses physico-chemical and electrochemical properties of the 5-V cathodes materials with various strutural frameworks. They are LiNi0.5Mn1.5O4 spinel oxides and their related doped parents and olivine, inverse spinel, fluorovanadate and fluorophosphate structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodenough JB (2002) Oxides cathodes. In: Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York pp 135–154

    Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Google Scholar 

  3. Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sour 219:36–44

    Google Scholar 

  4. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x<1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Google Scholar 

  5. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries Chem Lett 30:642–643

    Google Scholar 

  6. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1982) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472

    Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Google Scholar 

  8. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Google Scholar 

  9. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Google Scholar 

  10. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sour 195:939–954

    Google Scholar 

  11. Zaghib K, Mauger A, Julien CM (2012) Overview of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845

    Google Scholar 

  12. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sour 195:5442–5451

    Google Scholar 

  13. Liu GQ, Wen L, Liu YM (2010) Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem 14:2191–2202

    Google Scholar 

  14. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939

    Google Scholar 

  15. Liu D, Han J, Dontigny M, Charest P, Guerfi A, Zaghib K, Goodenough JB (2010) Redox behaviors of Ni and Cr with different counter cations in spinel cathodes for Li-ion batteries. J Electrochem Soc 157:A770–A775

    Google Scholar 

  16. Shin Y, Manthiram A (2003) Origin of the high voltage (>4.5 V) capacity of spinel lithium manganese oxides. Electrochim Acta 48:3583–3592

    Google Scholar 

  17. Obrovac MN, Gao Y, Dahn JR (1998) Explanation for the 4.8-V plateau in LiCr x Mn2−x O4. Phys Rev B: Condens Matter 57:5728–5733

    Google Scholar 

  18. Gryffroy D, Vaudenberghe RE (1992) Cation distribution, cluster structure and ionic ordering of the spinel series LiNi0.5Mn1.5−xTixO4 and LiNi0.5−yMgyMn1.5O4. J Phys Chem Solids 53:777–784

    Google Scholar 

  19. Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126

    Google Scholar 

  20. Strobel P, Ibarra-Palos A, Anne M, Poinsignon C, Crisci A (2003) Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sci 5:1009–1018

    Google Scholar 

  21. Ariyoshi K, Iwakoshi Y, Nakayama N, Ohzuku T (2004) Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells. J Electrochem Soc 151:A296–A303

    Google Scholar 

  22. Kanamura K, Hoshikawa W, Umegaki T (2002) Electrochemical characteristics of LiNi0.5Mn1.5O4 cathodes with Ti or Al current collectors. J Electrochem Soc 149:A339–A345

    Google Scholar 

  23. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sour 81–82:90–94

    Google Scholar 

  24. Okada M, Lee YS, Yoshio M (2000) Cycle characterizations of LiMxMn2-xO4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sour 90:196–200

    Google Scholar 

  25. Dokko K, Mohamedi M, Anzue N, Itoh T, Uchida I (2002) In situ Raman spectroscopic studies of LiNixMn2−xO4 thin film cathode materials for lithium ion secondary batteries. J Mater Chem 12:3688–3693

    Google Scholar 

  26. Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) Electrochemical and structural properties of a 4.7 V-class LiNi0.5Mn1.5O4 positive electrode material prepared with a self-reaction method. J Electrochem Soc 151:A173–A177

    Google Scholar 

  27. Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM (2002) High-voltage LiMgδNi0.5−δMn1.5O4 spinels for Li-ion batteries. Solid State Ionics 152–153:143–153

    Google Scholar 

  28. Blasse G (1966) Ferromagnetism and ferrimagnetism of oxygen spinels containing tetravalent manganese. J Phys Chem Solids 27:383–389

    Google Scholar 

  29. Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2007) Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J Magn Magn Mater 309:100–105

    Google Scholar 

  30. Mukai K, Sugiyama J (2010) An indicator to identify the Li[Ni1/2Mn3/2]O4 (P4332): dc-susceptibility measurements. J Electrochem Soc 157:A672–A676

    Google Scholar 

  31. Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sour 119–121:125–129

    Google Scholar 

  32. Park SH, Oh SW, Myung ST, Sun YK (2004) Mo6+-doped Li[Ni(0.5+x)Mn(1.5−2x)Mo x ]O4 spinel materials for 5 V lithium secondary batteries prepared by ultrasonic spray pyrolysis. Electrochem Solid-State Lett 7:A451–A454

    Google Scholar 

  33. Moorhead-Rosenberg Z, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl Phys Lett 100:213909-1–213909-5

    Google Scholar 

  34. Idemoto Y, Narai H, Koura N (2002) Oxygen content and electrode characteristics of LiMn1.5Ni0.5O4 as a 5 V class cathode material for lithium secondary battery. Electrochemistry 70:587–589

    Google Scholar 

  35. Rhodes K, Meisner R, Kim Y, Dudney N, Daniel C (2011) Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD. J Electrochem Soc 158:A890–A897

    Google Scholar 

  36. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4−δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-m and P4332. Chem Mater 16:906–914

    Google Scholar 

  37. Bhaskar A, Bramnik NN, Senyshyn A, Fuess H, Ehrenberg H (2010) Synthesis, characterization, and comparison of electrochemical properties of LiM0.5Mn1.5O4 (M = Fe Co, Ni) at different temperatures. J Electrochem Soc 157:A689–A695

    Google Scholar 

  38. Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156:286–291

    Google Scholar 

  39. Wen W, Kumarasamy B, Mukerjee S, Auinat M, Ein-Eli Y (2005) Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5−xMn1.5+xO4 (0 ≤ x≤0.5) cathode materials in situ XRD and XANES spectroscopy studies. J Electrochem Soc 152:A1902–A1911

    Google Scholar 

  40. Mukerjee S, Yang XQ, Sunb X, Lee SJ, McBreen J, Ein-Eli Y (2004) In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochim Acta 49:3373–3382

    Google Scholar 

  41. Liu D, Lu Y, Goodenough JB (2010) Rate properties and elevated-temperature performances of LiNi0.5−x Cr2x Mn1.5−x O4 (0 ≤ 2x ≤ 0.8) as 5 V cathode materials for lithium-ion batteries. J Electrochem Soc 157:A1269–A1273

    Google Scholar 

  42. Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3 m and P4332 LiNi0.5Mn1.5O4. Solid State Ionics 193:32–38

    Google Scholar 

  43. Julien CM, Gendron F, Amdouni N, Massot M (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Mater Sci Eng B 130:41–48

    Google Scholar 

  44. Matsui M, Dokko K, Kanamura K (2010) Surface layer formation and stripping process on LiMn2O4 and LiNi1/2Mn3/2O4 thin film electrodes. J Electrochem Soc 157:A121–A129

    Google Scholar 

  45. Gao Y, Myrtle K, Zhang MJ, Reimers JN, Dahn JR (1996) Valence band of LiNi x Mn2-x O4 and its effects on the voltage profiles of LiNi x Mn2−x O4/Li electrochemical cells. Phys Rev B: Condens Matter 54:16670–16675

    Google Scholar 

  46. Shin Y, Manthiram A (2004) Factors influencing the capacity fade of spinel lithium manganese oxides. J Electrochem Soc 151:A204–A208

    Google Scholar 

  47. Patoux Q, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: From the material research to the application. J Power Sour 189:344–352

    Google Scholar 

  48. Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. J Power Sources 153:174–176

    Google Scholar 

  49. Chen ZY, Ji S, Linkov V, Zhang JL, Zhu W (2009) Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J Power Sour 189:507–510

    Google Scholar 

  50. Miao C, Shi L, Chen G, Dai D (2012) Preparation of precursor of LiNi0.5Mn1.5O4 with high density. Adv Mater Res 463–464:881–884

    Google Scholar 

  51. Liu G, Qi L, Wen L (2006) Synthesis and electrochemical performance of LiNixMn2−xO4 spinel as cathode material for lithium ion batteries. Rare Met Mater Eng 35:299–302

    Google Scholar 

  52. Fang HS, Wang ZX, Yin ZL, Li XH, Guo HJ, Peng WJ (2005) Effect of ball milling and electrolyte on properties of high-voltage LiNi0.5Mn1.5O4 spinel. Trans Nonferrous Met Soc Chin (English) 15:1429–1432

    Google Scholar 

  53. Fang HS, Li LP, Li GS (2007) A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J Power Sour 167:223–227

    Google Scholar 

  54. Xu HY, Xie S, Ding N, Liu BL, Shang Y, Chen CH (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method. Electrochem Acta 51:4352–4357

    Google Scholar 

  55. Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5 − yNi0.5 − zMy + zO4 (M = Li, Mg, Fe Co, and Zn). Electrochem Solid-State Lett 8:A403–A405

    Google Scholar 

  56. Aklalouch M, Amarilla JM, Saadoune I, Rojo JM (2011) LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55 C: analysis of the effect of the particle size. J Power Sour 196:10222–10227

    Google Scholar 

  57. Kim JH, Myung ST, Sun YK (2004) Molten salt synthesis of LiNi0(5Mn1(5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta 49:219–227

    Google Scholar 

  58. Chen G, Hai B, Shukla AK, Duncan H (2012) Impact of LiMn1.5Ni0.5O4 crystal surface facets. ECS Symp Abstr700

    Google Scholar 

  59. Lim SJ, Ryu WH, Kim WK, Kwon HS (2012) Electrochemical performance of LiNi0.5Mn1.5O4 cathode material fabricated from nanothorn sphere structured MnO2. ECS Symp Abstr953

    Google Scholar 

  60. Zhao ZQ, Ma JF, Tian H, Xie LJ, Zhou J, Wu PW, Wang YG, Tao JT, Zhu XY (2005) Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 cathode material by the soft combustion reaction method. J Am Ceram Soc 88:3549–3552

    Google Scholar 

  61. Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723

    Google Scholar 

  62. Fan YK, Wang JM, Ye XB, Zhang JQ (2007) Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a co-precipitation method. Mater Chem Phys 103:19–23

    Google Scholar 

  63. Yi TF, Hu XG (2007) Preparation and characterization of sub-micro LiNi0.5−x Mn1.5+x O4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sour 167:185–191

    Google Scholar 

  64. Ohzuku T, Ariyoshi K, Yamamoto S (2002) Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. J Ceram Soc Jpn 110:501–505

    Google Scholar 

  65. Myung ST, Komaba S, Kumagai N, Yashiro H, Chung HT, Cho TH (2002) Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochim Acta 47:2543–2549

    Google Scholar 

  66. Zhao Q, Ye N, Li L, Yan F (2010) Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance. Rare Met Mater Eng 39:1715–1718

    Google Scholar 

  67. Liu D, Han J, Goodenough JB (2010) Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. J Power Sour 195:2918–2923

    Google Scholar 

  68. Yang K, Su J, Zhang L, Long Y, Lv X, Wen Y (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770

    Google Scholar 

  69. Cao A, Manthiram A (2012) Controlled synthesis of high tap density LiMn1.5Ni0.5O4 with tunable shapes. ECS Symp Abstr699

    Google Scholar 

  70. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V Li x Mn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352

    Google Scholar 

  71. Yamada M, Dongying B, Kodera T, Myoujin K, Ogihara T (2009) Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis. J Ceram Soc Jpn 117:1017–1020

    Google Scholar 

  72. Wu HM, Tu JP, Chen XT, Shi DQ, Zhao XB, Cao GS (2006) Synthesis and characterization of abundant Ni-doped LiNi x Mn2−x O4 (x = 0.1–0.5) powders by spray-drying method. Electrochim Acta 51:4148–4152

    Google Scholar 

  73. Park SH, Oh SW, Yoon CS, Myung ST, Sun YK (2005) LiNi0.5Mn1.5O4 showing reversible phase transition on 3 V region. Electrochem Solid-State Lett 8:A163–A167

    Google Scholar 

  74. Ogihara T, Kodera T, Myoujin K, Motohira S (2009) Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater Sci Eng, B 161:109–114

    Google Scholar 

  75. Kojima M, Mukoyama I, Myoujin K, Kodera T, Ogihara T (2009) Mass production and battery properties of LiNi0.5Mn 1.5O4 powders prepared by internal combustion type spray pyrolysis. Key Eng Mater 388:85–88

    Google Scholar 

  76. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2-yO4 (0 < y<1). Solid State Ionics 81:167–170

    Google Scholar 

  77. Arrebola JC, Caballero A, Hernan L, Morales J (2008) PMMA-assisted synthesis of Li1−x Ni0.5Mn1.5O4−δ for high-voltage lithium batteries with expanded rate capability at high cycling temperatures. J Power Sources 180:852–858

    Google Scholar 

  78. Kalyani P, Kalaiselvi N, Muniyandi N (2003) An innovative soft-chemistry approach to synthesize LiNiVO4. Mater Chem Phys 77:662–668

    Google Scholar 

  79. Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079

    Google Scholar 

  80. Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sour 205:385–393

    Google Scholar 

  81. Park SB, Eom WS, Cho WI, Jang H (2006) Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J Power Sour 159:679–684

    Google Scholar 

  82. Amatucci GG, Pereira N, Zheng T, Tarascon JM (2001) Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAl x Mn2−x O4−z F z solid solution. J Electrochem Soc 148:A171–A182

    Google Scholar 

  83. Oh SW, Park SH, Kim JH, Bae YC, Sun YK (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sour 157:464–470

    Google Scholar 

  84. Xu XX, Yang J, Wang YQ, Wang JL (2007) LiNi0.5Mn1.5O3.975F0.05 as novel 5-V cathode material. J Power Sour 174:1113–1116

    Google Scholar 

  85. Du GD, NuLi Y, Yang J, Wang J (2008) Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater Res Bull 43:3607–3613

    Google Scholar 

  86. Wu X, Zong X, Yang Q, Jin Z, Wu H (2001) Electrochemical studies of substituted spinel LiAlyMn2−yO4−zFz for lithium secondary batteries. J Fluorine Chem 107:39–44

    Google Scholar 

  87. Sun YK, Park GS, Lee YS, Yoshio M, Nahm KS (2001) Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling. J Electrochem Soc 148:A994–A998

    Google Scholar 

  88. Sun YK, Oh SW, Yoon CS, Bang HJ, Prakash J (2006) Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−x S x spinel material in 3-V region. J Power Sour 161:19–26

    Google Scholar 

  89. Xi N, Zhong B, Chen M, Yin K, Li L, Liu H, Guo X (2013) Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim Acta 97:184–191

    Google Scholar 

  90. Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Zhang JG (2012) Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys 14:13515–13521

    Google Scholar 

  91. Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) A New three-volt spinel Li1+x Mn1.5Ni0.5O4 for secondary lithium batteries. J Electrochem Soc 143:1607–1613

    Google Scholar 

  92. Liu D, Hamel-Paquet J, Trottier J, Barray F, Gariépy V, Hovington P, Guerfi A, Mauger A, Julien CM, Goodenough JB, Zaghib K (2012) Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. J Power Sour 217:400–406

    Google Scholar 

  93. Shin DW, Bridges CA, Huq A, M. Paranthaman MP, Manthiram A (2012) Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem Mater 24:3720–3731

    Google Scholar 

  94. Takahashi Y, Sasaoka H, Kuzuo R, Kijima N, Akimoto J (2006) A low-temperature synthetic route and electrochemical properties of micrometer-sized LiNi0.5Mn1.5O4 single crystals. Electrochem Solid-State Lett 9:A203–A206

    Google Scholar 

  95. Kanamura K, Hoshikawa W, Umegaki T (2001) Preparation and evaluation of new cathode materials for rechargeable lithium battery with 5 V. J Japn Soc Powder Met 48:283–287

    Google Scholar 

  96. Maeda Y, Ariyoshi K, Kawai T, Sekiya T, Ohzuku T (2009) Effect of deviation from Ni/Mn stoichiometry in Li[Ni1/2Mn3/2]O4 upon rechargeable capacity at 4.7 V in nonaqueous lithium cells. J Ceram Soc Jpn 117:1216–1220

    Google Scholar 

  97. Yoshio M, Konishi T, Todorov YM, Noguchi H (2000) Electrochemical behavior of nonstoichiometric LiMn2−xNixO4 as a 5-V cathode material. Electrochemistry 68:412–414

    Google Scholar 

  98. Xia H, Meng YS, Lu L, Ceder G (2007) Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4−δ thin-film electrodes prepared by pulsed laser deposition. J Electrochem Soc 154:A737–A743

    Google Scholar 

  99. Pasero D, Reeves N, Pralong V, West AR (2008) Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4−δ . J Electrochem Soc 155:A282–A291

    Google Scholar 

  100. Jin YC, Lin CY, Duh JG (2012) Improving rate capability of high potential LiNi0.5Mn1.5O4−x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 69:45–50

    Google Scholar 

  101. Wu X, Kim SB (2002) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel. J Power Sour 109:53–57

    Google Scholar 

  102. Wu HM, Tu JP, Yuan YF, Li Y, Zhao XB, Cao GS (2005) Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochim Acta 50:4104–4108

    Google Scholar 

  103. Kim JH, Yoon CS, Myung ST, Prakash J, Sun YK (2004) Phase transitions in Li1−δ Ni0.5Mn1.5O4 during cycling at 5 V. Electrochem Solid-State Lett 7:A216–A220

    Google Scholar 

  104. Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−x Ni0.5Mn1.5O4 spinel. Electrochim Acta 47:1829–1835

    Google Scholar 

  105. Zhu W, Liu D, Trottier J, Gagnon C, Mauger A, Julien CM, Zaghib K (2013) In-situ XRD study of the phase evolution in un-doped and Cr-doped LixMn1.5Ni0.5O4 (0.1 ≤ x≤0.1) 5-volt cathode materials. J Power Sour 242:236–243

    Google Scholar 

  106. Kim JH, Pieczonka NPW, Li Z, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim Acta 90:556–562

    Google Scholar 

  107. Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1:759–769

    Google Scholar 

  108. Sun YK, Yoon CS, Oh IH (2003) Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochim Acta 48:503–506

    Google Scholar 

  109. Aurbach D, Markovsky B, Talyosef Y, Salitra G, Kim HJ, Choi S (2006) Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J Power Sour 162:780–789

    Google Scholar 

  110. Mun J, Yim T, Park K, Ryu JH, Kim YG, Oh SM (2011) Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. J Electrochem Soc 158:A453–A457

    Google Scholar 

  111. Wu W, Li X, Wang Z, Guo H, Wang J, Xue P (2013) Comprehensive reinvestigation on the initial coulombic efficiency and capacity fading mechanism of LiNi0.5Mn1.5O4 at low rate and elevated temperature. J Solid State Electrochem. doi: 10.1007/s10008-012-1963-5

  112. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128

    Google Scholar 

  113. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707

    Google Scholar 

  114. Liu J, Manthiram A (2009) Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838

    Google Scholar 

  115. Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J Electrochem Soc 150:A1577–A1582

    Google Scholar 

  116. Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Ramos-Barrado JR (2007) Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J Electrochem Soc 154:A178–A184

    Google Scholar 

  117. Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta 52:3870–3875

    Google Scholar 

  118. Cho J, Kim YJ, Kim TJ, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Ang Chem Int Ed 40:3367–3369

    Google Scholar 

  119. Chen Z, Dahn JR (2002) Effect of a ZrO2 Coating on the structure and electrochemistry of Li x CoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216

    Google Scholar 

  120. Appapillai AT, Mansour AN, Cho J, Shao-Horn Y (2007) Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem Mater 19:5748–5757

    Google Scholar 

  121. Fey GTK, Li W, Dahn JR (1994) LiNiVO4: A 4.8 volt electrode material for lithium cells. J Electrochem Soc 141:2279–2282

    Google Scholar 

  122. Fey GTK, Dahn JR, Zhang M, Li W (1997) The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material. J Power Sour 68:549–552

    Google Scholar 

  123. Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) Novel low-temperature synthesis and characterization of LiNiVO4 for high-voltage Li-ion batteries. J Mater Chem 7:1791–1796

    Google Scholar 

  124. Fey GTK, Perng WB (1997) A new preparation method for a novel high voltage cathode material: LiNiVO4. Mater Chem Phys 47(1997):279–282

    Google Scholar 

  125. Rissouli K, Benkhouja K, Touaiher M, Ait-Salah A, Jaafari K, Fahad M, Julien C (2005) Structure and conductivity of lithiated vanadates LiMVO4 (M = Mn Co, Ni). J Phys IV France 123:265–269

    Google Scholar 

  126. Lu CH, Liou SJ (1998) Preparation of submicrometer LiNiVO4 powder by solution route for lithium ion secondary batteries. J Mater Sci Lett 17:733–735

    Google Scholar 

  127. Fey GTK, Huang DL (1999) Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries. Electrochim Acta 45:295–314

    Google Scholar 

  128. Cao X, Xie L, Zhan H, Zhou Y (2008) Rheological phase synthesis and characterization of LiNiVO4 as a high voltage cathode material for lithium ion batteries. J New Mater Electrochem Syst 11:193–198

    Google Scholar 

  129. Vivekanandhan S, Venkateswarlu M, Satyanarayana N (2004) Glycerol-assisted gel combustion synthesis of nano-crystalline LiNiVO4 powders for secondary lithium batteries. Mater Lett 58:1218–1222

    Google Scholar 

  130. Chitra S, Kalyani P, Yebka B, Mohan T, Haro-Poniatowski E, Gangadharan R, Julien C (2000) Synthesis, characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Mater Chem Phys 65:32–37

    Google Scholar 

  131. Subramania A, Angayarkanni N, Karthick SN, Vasudevan T (2006) Combustion synthesis of inverse spinel LiNiVO4 nano-particles using gelatine as the new fuel. Mater Lett 60:3023–3026

    Google Scholar 

  132. Li X, Wei YJ, Ehrenberg H, Liu DL, Zhan SY, Wang CZ, Chen G (2009) X-ray diffraction and Raman scattering studies of Li+/e-extracted inverse spinel LiNiVO4. J Alloys Compd 471:L26–L28

    Google Scholar 

  133. Lai QY, Lu JZ, Liang XL, Yan FY, Ji XY (2001) Synthesis and electrochemical characteristics of Li-Ni vanadates as positive materials. Intern J Inorg Mater 3:381–385

    Google Scholar 

  134. Palanichamy K (2011) On the modified inverse spinel-LiCo(PO4)x(VO4)1−x as cathode for rechargeable lithium batteries. Ionics 17:391–397

    Google Scholar 

  135. Fey GTK, Chen KS (1999) Synthesis, characterization, and cell performance of LiNiVO4 cathode materials prepared by a new solution precipitation method. J Power Sour 81–82:467–471

    Google Scholar 

  136. Lu CH, Liou SJ (2000) Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature. Mater Sci Eng, B 75:38–42

    Google Scholar 

  137. Phuruangrat A, Thongtem T, Thongtem S (2007) Preparation and characterization of nano-crystalline LiCoVO4 and LiNiVO4 used as cathodes for lithium ion batteries. J Ceram Proc Res 8:450–452

    Google Scholar 

  138. Phuruangrat A, Thongtem T, Thongtem S (2007) Characterization of nano-crystalline LiNiVO4 synthesized by hydrothermal process. Mater Lett 61:3805–3808

    Google Scholar 

  139. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1999) Rare earth element (La) doped LiNiVO4 as cathode material for secondary lithium ion cells. Mater Sci Forum 315–317:105–112

    Google Scholar 

  140. Reddy MV, Pecquenard B, Vinatier P, Levasseur A (2007) Cyclic voltammetry and galvanostatic cycling characteristics of LiNiVO4 thin films during lithium insertion and re/de-insertion. Electrochem Commun 9:409–415

    Google Scholar 

  141. Kalyani P, Kalaiselvi N, Renganathan NG (2005) LiNiMxV1−xO4 (M = Co, Mg and Al) solid solutions—prospective cathode materials for rechargeable lithium batteries. Mater Chem Phys 90:196–202

    Google Scholar 

  142. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier Science Amsterdam 5:264–296

    Google Scholar 

  143. Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411

    Google Scholar 

  144. Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid-State Lett 11:A89–A93

    Google Scholar 

  145. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Google Scholar 

  146. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sour 142:389–390

    Google Scholar 

  147. Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications. Electrochem Solid-State Lett 14:A86–A89

    Google Scholar 

  148. Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sour 145:74–81

    Google Scholar 

  149. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) Electrochemical and structural study of LiCoPO4-based electrodes. J Solid State Electrochem 8:558–564

    Google Scholar 

  150. Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y (2004) Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material. Chem Mater 16:3399–3401

    Google Scholar 

  151. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915

    Google Scholar 

  152. Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sour 97–98:430–432

    Google Scholar 

  153. Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324

    Google Scholar 

  154. Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439

    Google Scholar 

  155. Rabanal ME, Gutierrez MC, Garcia-Alvarado F, Gonzalo EC, Arroyoy de Dompablo ME (2006) Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling. J Power Sour 160:523–528

    Google Scholar 

  156. Koleva V, Zhecheva E, Stoyanova R (2010) Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur J Inorg Chem 26:4091–4099

    Google Scholar 

  157. Kandhasamy S, Pandey A, Minakshi M (2012) Polyvinyl-pyrrolidone assisted sol-gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim Acta 60:170–176

    Google Scholar 

  158. Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:A1456–A1460

    Google Scholar 

  159. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233

    Google Scholar 

  160. Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207

    Google Scholar 

  161. Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries-Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69

    Google Scholar 

  162. Lloris JM, Pérez-Vicente C, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid-State Lett 5:A234–A237

    Google Scholar 

  163. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn Co, Ni) prepared via a nonaqueous sol-gel route batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A716–A723

    Google Scholar 

  164. Gangulibabu N, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M = Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144

    Google Scholar 

  165. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn Co, Ni. Electrochem Commun 6:1144–1148

    Google Scholar 

  166. Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sour 165:887–891

    Google Scholar 

  167. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189

    Google Scholar 

  168. Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M = Co, Ni) compounds. J Magn Magn Mater 164:251–255

    Google Scholar 

  169. Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193

    Google Scholar 

  170. Kornev I, Bichurin M, Rivera JP, Gentil S, Schmid H, Jansen AGM, Wyder P (2000) Magnetoelectric properties of LiCoPO4 and LiNiPO4. Phys Rev B Condens Matter 62:12247–12253

    Google Scholar 

  171. Yamauchi K, Picozzi S (2010) Magnetic anisotropy in Li-phosphates and origin of magnetoelectricity in LiNiPO4. Phys Rev B: Condens Matter 81:024110

    Google Scholar 

  172. Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633

    Google Scholar 

  173. Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209

    Google Scholar 

  174. Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2012) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem 22:1142–1149

    Google Scholar 

  175. Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919

    Google Scholar 

  176. Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1-yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565

    Google Scholar 

  177. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8-V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178–179

    Google Scholar 

  178. Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sour 136:150–153

    Google Scholar 

  179. Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J Power Sour 221:35–41

    Google Scholar 

  180. Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sour 163:1070–1073

    Google Scholar 

  181. Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sour 144:226–230

    Google Scholar 

  182. Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sour 138:281–282

    Google Scholar 

  183. Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sour 158:1431–1435

    Google Scholar 

  184. Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sour 196:4806–4810

    Google Scholar 

  185. Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1-x CoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203

    Google Scholar 

  186. Dimesso L, Spanheimer C, Jaegermann W, Zhang Y, Yarin AL (2013) LiCoPO4—3D carbon nanofiber composites as possible cathode materials for high voltage applications. Electrochim Acta 97:38–42

    Google Scholar 

  187. Devaraju MK, Rangappa D, Honma I (2012) Controlled synthesis of plate-like LiCoPO4 nanoparticles via supercritical method and their electrode property. Electrochim Acta 85:548–553

    Google Scholar 

  188. Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sour 195:5768–5774

    Google Scholar 

  189. Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sour 146:565–569

    Google Scholar 

  190. Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sour 196:355–360

    Google Scholar 

  191. Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9−yMyO4−zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z≤0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10170

    Google Scholar 

  192. Koyama Y, Tanaka I, Adachi H (2000) New fluoride cathodes for rechargeable lithium batteries. J Electrochem Soc 147:3633–3636

    Google Scholar 

  193. Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5

    Google Scholar 

  194. Nagahama M, Hasegawa N (2010) Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 157:A748–A752

    Google Scholar 

  195. Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sour. doi:10.1016/j.jpowsour.2012.12.010

    Google Scholar 

  196. Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668

    Google Scholar 

  197. Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2−xMP2O7 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3937

    Google Scholar 

  198. Xu KC, Cresce AVW (2012) Electrolytes in support of 5 V Li-ion chemistry. Patent appl number: 20120225359

    Google Scholar 

  199. La Mantia F, Huggins RA, Cui Y (2013) Oxidation processes on conducting carbon additives for lithium-ion batteries. J Appl Electrochem 43:1–17

    Google Scholar 

  200. Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Low temperature synthesis of LiNi0.5Mn1.5O4 spinel. Mater Lett 60:1273–1275

    Google Scholar 

  201. Liu YJ, Liu ZY, Chen XH, Chen L (2012) Synthesis and performance of LiNi0.5Mn1.5O4 cathodes. J Central South Univ (Sci and Technol) 43:4248–4252

    Google Scholar 

  202. Julien C, Massot M, Pérez-Vicente C (2000) Structural and vibrational studies of LiNi1−yCoyVO4 (0 ≤ y≤1) cathodes materials for Li-ion batteries. Mater Sci Eng B 75:6–12

    Google Scholar 

  203. Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360

    Google Scholar 

  204. Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Julien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Julien, C.M., Mauger, A., Zaghib, K., Liu, D. (2015). High Voltage Cathode Materials. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics