Skip to main content

Part of the book series: MS&A ((MS&A,volume 15))

  • 1385 Accesses

Abstract

The most natural way to describe the bridge roadway is to view it as a rectangular elastic plate. Rocard (Dynamic instability: automobiles, aircraft, suspension bridges. Crosby Lockwood, London, 1957, p. 150) writes:

The plate as a model is perfectly correct and corresponds mechanically to a vibrating suspension bridge.

In this chapter we make some attempts to model suspension bridges with nonlinear plate equations. We discuss both material nonlinearities, such as the behavior of the restoring force due to the hangers and the sustaining cables, and geometric nonlinearities due to possible wide oscillations which bring the plate (roadway) far away from its equilibrium position. The results in the present chapter should be seen as a prelude of more detailed studies aiming to increase the knowledge of the qualitative behavior of suspension bridges through plate models. Still, these results are sufficient to highlight a torsional instability and the existence of a flutter energy similar to those described in the previous chapters for different models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65 (Academic, New York/London, 1975)

    Google Scholar 

  2. M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. T.M.A. 106, 18–34 (2014)

    Google Scholar 

  3. O.H. Ammann, T. von Kármán, G.B. Woodruff, The Failure of the Tacoma Narrows Bridge (Federal Works Agency, Washington, DC, 1941)

    Google Scholar 

  4. S.S. Antman, Ordinary differential equations of nonlinear elasticity. I. Foundations of the theories of nonlinearly elastic rods and shells. Arch. Ration. Mech. Anal. 61, 307–351 (1976)

    MATH  MathSciNet  Google Scholar 

  5. S.S. Antman, Buckled states of nonlinearly elastic plates. Arch. Ration. Mech. Anal. 67, 111–149 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. S.S. Antman, Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107 (Springer, New York, 2005)

    Google Scholar 

  7. S.S. Antman, W. Lacarbonara, Forced radial motions of nonlinearly viscoelastic shells. J. Elast. 96, 155–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Augusti, V. Sepe, A “deformable section” model for the dynamics of suspension bridges. Part i: model and linear response. Wind Struct. 4, 1–18 (2001)

    Google Scholar 

  9. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  10. L. Bauer, E. Reiss, Nonlinear buckling of rectangular plates. J. SIAM 13, 603–626 (1965)

    Google Scholar 

  11. E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, arXiv:1502.05851

    Google Scholar 

  12. E. Berchio, F. Gazzola, C. Zanini, Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems? arXiv:1410.2374

    Google Scholar 

  13. H.M. Berger, A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472 (1955)

    MATH  MathSciNet  Google Scholar 

  14. M.S. Berger, On von Kármán’s equations and the buckling of a thin elastic plate, I. The clamped plate. Commun. Pure Appl. Math. 20, 687–719 (1967)

    Article  MATH  Google Scholar 

  15. M.S. Berger, Nonlinearity and Functional Analysis. Pure and Applied Mathematics (Academic, New York/London, 1977)

    MATH  Google Scholar 

  16. M.S. Berger, P.C. Fife, On von Kármán’s equations and the buckling of a thin elastic plate. Bull. Am. Math. Soc. 72, 1006–1011 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  17. M.S. Berger, P.C. Fife, Von Kármán’s equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Commun. Pure Appl. Math. 21, 227–241 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Bernoulli Jr., Essai théorique sur les vibrations de plaques élastiques rectangulaires et libres. Nova Acta Acad. Petropolit. (St. Petersburg) 5, 197–219 (1789)

    Google Scholar 

  19. H.W. Broer, M. Levi, Geometrical aspects of stability theory for Hill’s equations. Arch. Ration. Mech. Anal. 131, 225–240 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. H.W. Broer, C. Simó, Resonance tongues in Hill’s equations: a geometric approach. J. Differ. Equ. 166, 290–327 (2000)

    Article  MATH  Google Scholar 

  21. A. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bulletin des Sciences de la Société Philomathique de Paris, 9–13 (1823)

    Google Scholar 

  22. X. Chen, J.W. Hutchinson, A family of herringbone patterns in thin films. Scr. Mater. 50, 797–801 (2004)

    Article  Google Scholar 

  23. E. Chladni, Entdeckungen über die theorie des klanges (Weidmanns Erben und Reich, Leipzig, 1787)

    Google Scholar 

  24. P.G. Ciarlet, A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73, 349–389 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. P.G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Recherches en mathématiques appliquées, vol. 14 (Masson, Paris, 1990)

    Google Scholar 

  26. P.G. Ciarlet, Mathematical Elasticity. Vol. II, Theory of Plates. Studies in Mathematics and its Applications, vol. 27 (North-Holland, Amsterdam, 1997)

    Google Scholar 

  27. P.G. Ciarlet, P. Rabier, Les équations de von Kármán. Studies in Mathematics and its Applications, vol. 27 (Springer, Berlin, 1980)

    Google Scholar 

  28. C.V. Coffman, On the structure of solutions to Δ 2 u = λ u which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13, 746–757 (1982)

    Google Scholar 

  29. H. Dai, X. Yue, S.N. Atluri, Solutions of the von Kármán plate equations by a Galerkin method, without inverting the tangent stiffness matrix. J. Mech. Mater. Struct. 9, 195–226 (2014)

    Article  Google Scholar 

  30. J.L. Davet, Justification de modèles de plaques nonlinéaires pour des lois de comportment générales. Mod. Math. Anal. Num. 20, 147–192 (1986)

    MathSciNet  Google Scholar 

  31. P. Destuynder, M. Salaun, Mathematical Analysis of Thin Plate Models. Mathématiques & Applications (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  32. L. Euler, De motu vibratorio tympanorum. Novi Commentarii Acad. Sci. Petropolitanae 10, 243–260 (1766)

    Google Scholar 

  33. A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges. Discrete Continuous Dyn. Syst. A 35 (2015)

    Google Scholar 

  34. K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung). Math. Ann. 98, 205–247 (1927)

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Galenko, D. Danilov, V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics. Phys. Rev. E 79, 11 (2009)

    Article  MathSciNet  Google Scholar 

  36. F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics, vol. 1991 (Springer, Berlin, 2010)

    Google Scholar 

  37. F. Gazzola, Y. Wang, Modeling suspension bridges through the von Kármán quasilinear plate equations, in Progress in Nonlinear Differential Equations and Their Applications. Contributions to Nonlinear Elliptic Equations and Systems: a tribute to Djairo Guedes de Figueiredo on occasion of his 80th birthday (Springer, 2015)

    Google Scholar 

  38. M.S. Germain, Recherches sur la théorie des surfaces élastiques (Huzard-Courcier, Libraire pour les Sciences, Paris, 1821)

    Google Scholar 

  39. M.E. Gurtin, On the nonlinear theory of elasticity, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, ed. by G.M. de la Penha, L.A. Medeiros (North-Holland, Amsterdam, 1978), pp. 237–253

    Google Scholar 

  40. H.M. Irvine, Cable Structures. MIT Press Series in Structural Mechanics (MIT Press, Cambridge, 1981)

    Google Scholar 

  41. G.R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Article  MATH  Google Scholar 

  42. G.H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27, 233–242 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  43. G.H. Knightly, D. Sather, On nonuniqueness of solutions of the von Kármán equations. Arch. Ration. Mech. Anal. 36, 65–78 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  44. G.H. Knightly, D. Sather, Nonlinear buckled states of rectangular plates. Arch. Ration. Mech. Anal. 54, 356–372 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  45. V.A. Kozlov, V.A. Kondratiev, V.G. Maz’ya, On sign variation and the absence of strong zeros of solutions of elliptic equations. Math. USSR Izvestiya 34, 337–353 (1990) (Russian original in: Izv. Akad. Nauk SSSR Ser. Mat. 53, 328–344 (1989))

    Google Scholar 

  46. W. Lacarbonara, Nonlinear Structural Mechanics (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  47. J.E. Lagnese, Boundary Stabilization of Thin Plates. Studies in Applied Mathematics (SIAM, Philadelphia, 1989)

    Google Scholar 

  48. J.E. Lagnese, J.L. Lions, Modelling Analysis and Control of Thin Plates. Collection RMA (Masson, Paris, 1988)

    MATH  Google Scholar 

  49. J.L. Lagrange, Mécanique Analytique (Courcier, Paris, 1811). Reissued by Cambridge University Press, Cambridge, 2009

    Book  Google Scholar 

  50. R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  Google Scholar 

  51. M. Lévy, Sur l’équilibre élastique d’une plaque rectangulaire. C. R. Acad. Sci. Paris 129, 535–539 (1899)

    MATH  Google Scholar 

  52. S. Levy, Bending of rectangular plates with large deflections. National Advisory Committee for Aeronautics, Washington. Report no. 737 (1942), pp. 139–157

    Google Scholar 

  53. S. Levy, D. Goldenberg, G. Zibritosky, Simply supported long rectangular plate under combined axial load and normal pressure. National Advisory Committee for Aeronautics, Washington. Technical Note 949 (1944), p. 24

    Google Scholar 

  54. P.-C. Lin, S. Yang, Spontaneous formation of one-dimensional ripples in transit to highly ordered twodimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 90, 241903 (2007)

    Article  Google Scholar 

  55. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

  56. E.H. Mansfield, The Bending and Stretching of Plates, 2nd edn. (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  57. P.J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98, 167–177 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  58. C. Menn, Prestressed Concrete Bridges (Birkhäuser, Basel, 1990)

    Book  Google Scholar 

  59. E. Miersemann, Über positive Lösungen von Eigenwertgleichungen mit Anwendungen auf elliptische Gleichungen zweiter Ordnung und auf ein Beulproblem für die Platte. Z. Angew. Math. Mech. 59, 189–194 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  60. R. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  61. A. Nadai, Die Elastischen Platten (Springer, Berlin, 1968)

    Google Scholar 

  62. P.M. Naghdi, The theory of shells and plates, in Handbuch der Physik, ed. by S. Flügge, C. Truesdell, vol. 6a/2 (Springer, Berlin, 1972), pp. 425–640

    Google Scholar 

  63. C.L. Navier, Extraits des recherches sur la flexion des plans élastiques. Bulletin des Sciences de la Société Philomathique de Paris 92–102 (1823)

    Google Scholar 

  64. S.D. Poisson, Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie Royale des Sciences de l’Institut de France 8, 357–570 (1829)

    Google Scholar 

  65. E. Reissner, On the theory of bending elastic plates. J. Math. Phys. 23, 184–191 (1944)

    MATH  MathSciNet  Google Scholar 

  66. E. Reissner, The effect of transverse shear deformations on the bending of elastic plates. J. Appl. Mech. 12, 69–77 (1945)

    MathSciNet  Google Scholar 

  67. A.R. Robinson, H.H. West, A re-examination of the theory of suspension bridges. Civil Engineering Series, Structural Research Series no. 322, Doctoral Dissertation, Urbana, Illinois, 1967

    Google Scholar 

  68. Y. Rocard, Dynamic Instability: Automobiles, Aircraft, Suspension Bridges (Crosby Lockwood, London, 1957)

    Google Scholar 

  69. R.H. Scanlan, J.J. Tomko, Airfoil and bridge deck flutter derivatives. J. Eng. Mech. 97, 1717–1737 (1971)

    Google Scholar 

  70. R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability (ASCE Press, Reston, 2001)

    Book  Google Scholar 

  71. F.C. Smith, G.S. Vincent, Aerodynamic Stability of Suspension Bridges: With Special Reference to the Tacoma Narrows Bridge, Part II: Mathematical Analysis. Investigation conducted by the Structural Research Laboratory, University of Washington (University of Washington Press, Seattle, 1950)

    Google Scholar 

  72. J. Song, H. Jiang, W.M. Choi, D.Y. Khang, Y. Huang, J.A. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)

    Article  Google Scholar 

  73. Tacoma Narrows Bridge Collapse (1940), http://www.youtube.com/watch?v=3mclp9qmcgs (Video)

  74. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68 (Springer, New York, 1997)

    Google Scholar 

  75. S.P. Timoshenko, Theory of Elasticity (McGraw-Hill, New York, 1951)

    MATH  Google Scholar 

  76. S.P. Timoshenko, History of Strengths of Materials (McGraw-Hill, New York, 1953)

    Google Scholar 

  77. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959)

    Google Scholar 

  78. C. Truesdell, Essays in the History of Mechanics (Springer, Berlin, 1968)

    Book  MATH  Google Scholar 

  79. C. Truesdell, Some challenges offered to analysis by rational thermomechanics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, ed. by G.M. de la Penha, L.A. Medeiros (North-Holland, Amsterdam, 1978), pp. 495–603

    Google Scholar 

  80. E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker, New York, 2001)

    Book  Google Scholar 

  81. P. Villaggio, Mathematical Models for Elastic Structures (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  82. T. von Kármán, Feestigkeitsprobleme in maschinenbau, in Encycl. der Mathematischen Wissenschaften, ed. by F. Klein, C. Müller, vol. IV/4C (Leipzig, 1910), pp. 48–352

    Google Scholar 

  83. T. von Kármán, L. Edson, The Wind and Beyond: Theodore von Kármán, Pioneer in Aviation and Pathfinder in Space (Little, Brown and Company, Boston, 1967)

    Google Scholar 

  84. Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations. J. Math. Anal. Appl. 418, 713–733 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  85. S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    MATH  MathSciNet  Google Scholar 

  86. O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all’azione di un carico concentrato comunque disposto. Ann. Mat. Pura Appl. 19, 107–124 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gazzola, F. (2015). Plate Models. In: Mathematical Models for Suspension Bridges. MS&A, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-15434-3_5

Download citation

Publish with us

Policies and ethics