Skip to main content

Supramolecular Hydrogels for Regenerative Medicine

  • Chapter
Supramolecular Polymer Networks and Gels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 268))

Abstract

Regenerative medicine is the science of re-creating or repairing living functional tissue, often inside the body. Biomaterials for regenerative medicine are inspired by the extracellular matrix (ECM), which provides the natural scaffold for cells inside the body. The use of supramolecular hydrogels as man-made tunable replacements for the ECM is being investigated because hydrogels offer an aqueous environment. In addition, supramolecular systems offer modularity and dynamics, also found in the ECM. This chapter gives an overview of translational research on different supramolecular hydrogels, showing systems that have been used in vivo in the field of regenerative medicine. We discuss the chemical structures and biomedical applications of various natural compounds, biosynthetic compounds, biohybrid systems, and fully synthetic materials. Furthermore, we discuss tuning of the mechanical properties and functionalization of these hydrogels with bioactive compounds. Both characteristics are essential for their function in contact with cells and for the creation of a regenerative niche, thereby controlling cellular adherence, proliferation, homing, and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH (2010) NIH fact sheet – regenerative medicine. National Institutes of Health, Bethesda, http://report.nih.gov/nihfactsheets/Pdfs/RegenerativeMedicine(NIBIB).pdf. Accessed 9 Oct 2014

  2. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi:10.1002/adma.200501612

    CAS  Google Scholar 

  3. Thiele J, Ma Y, Bruekers SMC, Ma S, Huck WTS (2013) 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26:125–148. doi:10.1002/adma.201302958

    Google Scholar 

  4. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128. doi:10.1126/science.1214804

    CAS  Google Scholar 

  5. Gong J, Osada Y (2010) Soft and wet materials: from hydrogels to biotissues. High Solid Dispers 236:203–246

    CAS  Google Scholar 

  6. Skardal A (2014) Extracellular matrix-like hydrogels for applications in regenerative medicine. In: Connon CJ, Hamley IW (eds) Hydrogels in cell-based therapies. Royal Society of Chemistry, Cambridge, doi: 10.1039/9781782622055-00191

  7. Ulijn RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217. doi:10.1039/b601776m

    CAS  Google Scholar 

  8. Abul-Haija YM, Ulijn RV (2014) Enzyme-responsive hydrogels for biomedical applications. In: Connon CJ, Hamley IW (eds) Hydrogels in cell-based therapies. Royal Society of Chemistry, Cambridge, doi: 10.1039/9781782622055-00112

  9. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed Engl 47:8002–8018. doi:10.1002/anie.200800022

    CAS  Google Scholar 

  10. Jones RG, Ober CK (2012) Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure Appl Chem 85:463. doi:10.1351/PAC-REC-12-03-12

    Google Scholar 

  11. Yui N (ed) (2002) Supramolecular design for biological applications. CRC, Boca Raton

    Google Scholar 

  12. Bosman AW, Sijbesma RP, Meijer EW (2004) Supramolecular polymers at work. Mater Today 7:34–39. doi:10.1016/S1369-7021(04)00187-7

    CAS  Google Scholar 

  13. Xu R, Boudreau A, Bissell M (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176. doi:10.1007/s10555-008-9178-z

    Google Scholar 

  14. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    CAS  Google Scholar 

  15. Collier JH, Rudra JS, Gasiorowski JZ, Jung JP (2010) Multi-component extracellular matrices based on peptide self-assembly. Chem Soc Rev 39:3413–3424. doi:10.1039/B914337H

    CAS  Google Scholar 

  16. Rehmann MS, Kloxin AM (2013) Tunable and dynamic soft materials for three-dimensional cell culture. Soft Matter 9:6737–6746. doi:10.1039/C3SM50217A

    CAS  Google Scholar 

  17. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306. doi:10.1039/B610522J

    CAS  Google Scholar 

  18. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26. doi:10.1016/j.stem.2009.06.016

    CAS  Google Scholar 

  19. Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WTS (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649. doi:10.1038/nmat3339

    CAS  Google Scholar 

  20. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48. doi:10.1016/S0092-8674(00)81856-5

    CAS  Google Scholar 

  21. Wang H, Yang Z, Adams DJ (2012) Controlling peptide-based hydrogelation. Mater Today 15:500–507. doi:10.1016/S1369-7021(12)70219-5

    CAS  Google Scholar 

  22. Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372. doi:10.1039/b923947b

    CAS  Google Scholar 

  23. Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. doi:10.1016/j.biomaterials.2007.07.044

    CAS  Google Scholar 

  24. Jonker AM, Löwik DWPM, van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773. doi:10.1021/cm202640w

    CAS  Google Scholar 

  25. Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed Engl 51:7396–7417. doi:10.1002/anie.201201040

    Google Scholar 

  26. Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41:909–930. doi:10.1039/C1CS15191F

    CAS  Google Scholar 

  27. Krieg E, Rybtchinski B (2011) Noncovalent water-based materials: robust yet adaptive. Chem A Eur J 17:9016–9026. doi:10.1002/chem.201100809

    CAS  Google Scholar 

  28. Weiss R, Terech P (eds) (2006) Molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht

    Google Scholar 

  29. Whittaker J, Balu R, Choudhury NR, Dutta NK (2014) Biomimetic protein-based elastomeric hydrogels for biomedical applications. Polym Int 63:1545–1557. doi:10.1002/pi.4670

    CAS  Google Scholar 

  30. Silva R, Fabry B, Boccaccini AR (2014) Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 35:6727–6738. doi:10.1016/j.biomaterials.2014.04.078

    CAS  Google Scholar 

  31. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408. doi:10.1021/bm200083n

    Google Scholar 

  32. Patterson J, Martino MM, Hubbell JA (2010) Biomimetic materials in tissue engineering. Mater Today 13:14–22. doi:10.1016/S1369-7021(10)70013-4

    CAS  Google Scholar 

  33. Kim TG, Shin H, Lim DW (2012) Biomimetic scaffolds for tissue engineering. Adv Funct Mater 22:2446–2468. doi:10.1002/adfm.201103083

    CAS  Google Scholar 

  34. Engel J, Bächinger H (2005) Structure, stability and folding of the collagen triple helix. In: Brinckmann J, Notbohm H, Müller PK (eds) Collagen SE-2. Springer, Berlin, pp 7–33

    Google Scholar 

  35. Yang Y, Leone LM, Kaufman LJ (2014) Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys J 97:2051–2060. doi:10.1016/j.bpj.2009.07.035

    Google Scholar 

  36. Achilli M, Mantovani D (2010) Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers (Basel) 2:664–680. doi:10.3390/polym2040664

    CAS  Google Scholar 

  37. Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13:1443–1453. doi:10.1089/ten.2006.0333

    CAS  Google Scholar 

  38. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124:214. doi:10.1115/1.1449904

    Google Scholar 

  39. Han J, Ohno N, Pasco S, Monboisse J-C, Borel JP, Kefalides NA (1997) A cell binding domain from the α3 chain of type IV collagen inhibits proliferation of melanoma cells. J Biol Chem 272:20395–20401. doi:10.1074/jbc.272.33.20395

    CAS  Google Scholar 

  40. Kleinman HK, Murray JC, McGoodwin EB, Martin GR (1978) Connective tissue structure: cell binding to collagen. J Invest Dermatol 71:9–11

    CAS  Google Scholar 

  41. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22. doi:10.1016/S0378-5173(01)00691-3

    CAS  Google Scholar 

  42. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    CAS  Google Scholar 

  43. Sutton R, Yu N, Luck E, Brown D, Conley F (1990) Reduction of vinblastine neurotoxicity in mice utilizing a collagen matrix carrier. Sel Cancer Ther 6:35–49. doi:10.1089/sct.1990.6.35

    CAS  Google Scholar 

  44. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416. doi:10.1016/S0142-9612(02)00353-8

    CAS  Google Scholar 

  45. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    CAS  Google Scholar 

  46. Nazarov R, Jin H-J, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726. doi:10.1021/bm034327e

    CAS  Google Scholar 

  47. Kim U-J, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785. doi:10.1016/j.biomaterials.2004.07.044

    CAS  Google Scholar 

  48. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792. doi:10.1021/bm0345460

    CAS  Google Scholar 

  49. Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, Giardino R, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536. doi:10.1016/j.biomaterials.2004.09.040

    CAS  Google Scholar 

  50. Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32:9415–9424. doi:10.1016/j.biomaterials.2011.08.047

    CAS  Google Scholar 

  51. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521. doi:10.1016/S0142-9612(00)00201-5

    CAS  Google Scholar 

  52. Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30:2122–2131. doi:10.1016/j.biomaterials.2008.12.057

    CAS  Google Scholar 

  53. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014. doi:10.3390/ma3020999

    Google Scholar 

  54. Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044–2050

    CAS  Google Scholar 

  55. Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, Van Dyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128. doi:10.1016/j.biomaterials.2007.08.023

    CAS  Google Scholar 

  56. Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, Van Dyke M (2009) A keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B Appl Biomater 90:45–54. doi:10.1002/jbm.b.31251

    Google Scholar 

  57. Apostolovic B, Danial M, Klok H-A (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39:3541–3575. doi:10.1039/b914339b

    CAS  Google Scholar 

  58. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420. doi:10.1038/17092

    CAS  Google Scholar 

  59. Petka W, Harden J, McGrath K, Wirtz D, Tirrell D (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392. doi:10.1126/science.281.5375.389

    CAS  Google Scholar 

  60. Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci USA 106:22067–22072. doi:10.1073/pnas.0904851106

    Google Scholar 

  61. Parisi-Amon A, Mulyasasmita W, Chung C, Heilshorn SC (2013) Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv Healthcare Mater 2:428–432. doi:10.1002/adhm.201200293

    CAS  Google Scholar 

  62. Jing P, Rudra JS, Herr AB, Collier JH (2008) Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9:2438–2446. doi:10.1021/bm800459v

    CAS  Google Scholar 

  63. Rudra JS, Tripathi PK, Hildeman DA, Jung JP, Collier JH (2010) Immune responses to coiled coil supramolecular biomaterials. Biomaterials 31:8475–8483. doi:10.1016/j.biomaterials.2010.07.068

    CAS  Google Scholar 

  64. Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R, Pilarz M, Lamm MS, Pochan DJ, Schneider JP (2007) Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci USA 104:7791–7796. doi:10.1073/pnas.0701980104

    CAS  Google Scholar 

  65. Collier JH, Messersmith PB (2003) Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14:748–755. doi:10.1021/bc034017t

    CAS  Google Scholar 

  66. Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci USA 107:622–627. doi:10.1073/pnas.0912124107

    CAS  Google Scholar 

  67. Jung JP, Nagaraj AK, Fox EK, Rudra JS, Devgun JM, Collier JH (2009) Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 30:2400–2410. doi:10.1016/j.biomaterials.2009.01.033

    CAS  Google Scholar 

  68. Aida T, Meijer E, Stupp S (2012) Functional supramolecular polymers. Science 335:813–817. doi:10.1126/science.1205962

    CAS  Google Scholar 

  69. Webber MJ, Kessler JA, Stupp SI (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267:71–88. doi:10.1111/j.1365-2796.2009.02184.x

    CAS  Google Scholar 

  70. Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508. doi:10.1002/adfm.200500161

    CAS  Google Scholar 

  71. Greenfield MA, Hoffman JR, Olvera de la Cruz M, Stupp SI (2009) Tunable mechanics of peptide nanofiber gels. Langmuir 26:3641–3647. doi:10.1021/la9030969

    Google Scholar 

  72. Webber MJ, Tongers J, Newcomb CJ, Marquardt K-T, Bauersachs J, Losordo DW, Stupp SI (2011) Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci USA 108:13438–13443. doi:10.1073/pnas.1016546108

    CAS  Google Scholar 

  73. Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI (2010) Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31:6004–6012. doi:10.1016/j.biomaterials.2010.04.013

    CAS  Google Scholar 

  74. Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107:3293–3298. doi:10.1073/pnas.0906501107

    CAS  Google Scholar 

  75. Huang Z, Newcomb CJ, Zhou Y, Lei YP, Bringas P Jr, Stupp SI, Snead ML (2013) The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials 34:3303–3314. doi:10.1016/j.biomaterials.2013.01.054

    CAS  Google Scholar 

  76. McClendon MT, Stupp SI (2012) Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722. doi:10.1016/j.biomaterials.2012.04.040

    CAS  Google Scholar 

  77. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler H, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355. doi:10.1126/science.1093783

    CAS  Google Scholar 

  78. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823. doi:10.1523/JNEUROSCI. 0143-08.2008

    CAS  Google Scholar 

  79. Palmgren B, Jiao Y, Novozhilova E, Stupp SI, Olivius P (2012) Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Exp Neurol 235:599–609. doi:10.1016/j.expneurol.2012.03.014

    CAS  Google Scholar 

  80. Behanna HA, Rajangam K, Stupp SI (2007) Modulation of fluorescence through coassembly of molecules in organic nanostructures. J Am Chem Soc 129:321–327. doi:10.1021/ja062415b

    CAS  Google Scholar 

  81. Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6:2086–2090. doi:10.1021/nl0613555

    CAS  Google Scholar 

  82. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3338. doi:10.1073/pnas.90.8.3334

    CAS  Google Scholar 

  83. Caplan MR, Schwartzfarb EM, Zhang S, Kamm RD, Lauffenburger DA (2002) Effects of systematic variation of amino acid sequence on the mechanical properties of a self-assembling, oligopeptide biomaterial. J Biomater Sci Polym Ed 13:225–236. doi:10.1163/156856202320176493

    CAS  Google Scholar 

  84. Schneider A, Garlick JA, Egles C (2008) Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 3:e1410. doi:10.1371/journal.pone.0001410

    Google Scholar 

  85. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393. doi:10.1016/0142-9612(95)96874-Y

    Google Scholar 

  86. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119. doi:10.1371/journal.pone.0000119

    Google Scholar 

  87. Genové E, Shen C, Zhang S, Semino CE (2005) The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351. doi:10.1016/j.biomaterials.2004.08.012

    Google Scholar 

  88. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39:3480–3498. doi:10.1039/b915923c

    CAS  Google Scholar 

  89. Ellis-Behnke RG, Liang Y-X, You S-W, Tay DKC, Zhang S, So K-F, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059. doi:10.1073/pnas.0600559103

    CAS  Google Scholar 

  90. Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi Y-K, Zhao X (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci USA 106:5105–5110. doi:10.1073/pnas.0900026106

    CAS  Google Scholar 

  91. Ruan L-P, Luo H-L, Zhang H-Y, Zhao X (2009) Investigation on structure and properties of a novel designed peptide. Macromol Res 17:597–602. doi:10.1007/BF03218915

    CAS  Google Scholar 

  92. Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD (2007) Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 129:12468–12472. doi:10.1021/ja072536r

    CAS  Google Scholar 

  93. Aulisa L, Dong H, Hartgerink JD (2009) Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10:2694–2698. doi:10.1021/bm900634x

    CAS  Google Scholar 

  94. Bakota EL, Wang Y, Danesh FR, Hartgerink JD (2011) Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromolecules 12:1651–1657. doi:10.1021/bm200035r

    CAS  Google Scholar 

  95. Wang Y, Bakota E, Chang BHJ, Entman M, Hartgerink JD, Danesh FR (2011) Peptide nanofibers preconditioned with stem cell secretome are renoprotective. J Am Soc Nephrol 22:704–717. doi:10.1681/ASN.2010040403

    Google Scholar 

  96. He L, Theato P (2013) Collagen and collagen mimetic peptide conjugates in polymer science. Eur Polym J 49:2986–2997. doi:10.1016/j.eurpolymj.2013.05.033

    CAS  Google Scholar 

  97. Pires MM, Przybyla DE, Chmielewski J (2009) A metal-collagen peptide framework for three-dimensional cell culture. Angew Chem Int Ed Engl 48:7813–7817. doi:10.1002/anie.200902375

    CAS  Google Scholar 

  98. Hernandez-Gordillo V, Chmielewski J (2014) Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds. Biomaterials 35:7363–7373. doi:10.1016/j.biomaterials.2014.05.019

    CAS  Google Scholar 

  99. Sano K-I, Kawamura R, Tominaga T, Nakagawa H, Oda N, Ijiro K, Osada Y (2011) Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12:1409–1413. doi:10.1021/bm101578x

    CAS  Google Scholar 

  100. Wieduwild R, Tsurkan M, Chwalek K, Murawala P, Nowak M, Freudenberg U, Neinhuis C, Werner C, Zhang Y (2013) Minimal peptide motif for non-covalent peptide–heparin hydrogels. J Am Chem Soc 135:2919–2922. doi:10.1021/ja312022u

    CAS  Google Scholar 

  101. Tran NQ, Joung YK, Lih E, Park KM, Park KD (2010) Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. Biomacromolecules 11:617–625. doi:10.1021/bm100047y

    CAS  Google Scholar 

  102. Yang Z, Xu K, Wang L, Gu H, Wei H, Zhang M, Xu B (2005) Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. Chem Commun 2005(35):4414–4416. doi: 10.1039/b507314f

    Google Scholar 

  103. Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic–aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132:2719–2728. doi:10.1021/ja9088764

    CAS  Google Scholar 

  104. Chen L, Pont G, Morris K, Lotze G, Squires A, Serpell LC, Adams DJ (2011) Salt-induced hydrogelation of functionalised-dipeptides at high pH. Chem Commun 47:12071–12073. doi:10.1039/C1CC15474E

    CAS  Google Scholar 

  105. Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530. doi:10.1016/j.biomaterials.2009.01.010

    CAS  Google Scholar 

  106. Yang Z, Liang G, Ma M, Abbah AS, Lu WW, Xu B (2007) d-Glucosamine-based supramolecular hydrogels to improve wound healing. Chem Commun 2007(8):843–845. doi: 10.1039/b616563j

    Google Scholar 

  107. Salem AK, Rose FRAJ, Oreffo ROC, Yang X, Davies MC, Mitchell JR, Roberts CJ, Stolnik-Trenkic S, Tendler SJB, Williams PM, Shakesheff KM (2003) Porous polymer and cell composites that self-assemble in situ. Adv Mater 15:210–213. doi:10.1002/adma.200390047

    CAS  Google Scholar 

  108. Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park K-H, Hoffman AS, Hahn SK, Kim K (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968. doi:10.1021/nn204123p

    CAS  Google Scholar 

  109. Van Bommel KJC, van der Pol C, Muizebelt I, Friggeri A, Heeres A, Meetsma A, Feringa BL, van Esch J (2004) Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angew Chem Int Ed 43:1663–1667. doi:10.1002/anie.200352396

    Google Scholar 

  110. Leenders CMA, Albertazzi L, Mes T, Koenigs MME, Palmans ARA, Meijer EW (2013) Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem Commun 49:1963–1965. doi:10.1039/C3CC38949A

    CAS  Google Scholar 

  111. Kim H-J, Lee J-H, Lee M (2005) Stimuli-responsive gels from reversible coordination polymers. Angew Chem Int Ed 44:5810–5814. doi:10.1002/anie.200501270

    CAS  Google Scholar 

  112. Van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175. doi:10.1021/bm901065f

    Google Scholar 

  113. Li L, Guo X, Wang J, Liu P, Prud’homme RK, May BL, Lincoln SF (2008) Polymer networks assembled by host–guest inclusion between adamantyl and β-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules 41:8677–8681. doi:10.1021/ma8020147

    CAS  Google Scholar 

  114. Auzély-Velty R, Rinaudo M (2002) New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35:7955–7962. doi:10.1021/ma020664o

    Google Scholar 

  115. Koopmans C, Ritter H (2008) Formation of physical hydrogels via host–guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules 41:7418–7422. doi:10.1021/ma801202f

    CAS  Google Scholar 

  116. Gosselet NM, Beucler F, Renard E, Amiel C, Sebille B (1999) Association of hydrophobically modified poly (N,N-dimethylacrylamide hydroxyethylmethacrylate) with water soluble β-cyclodextrin polymers. Colloids Surf A Physicochem Eng Asp 155:177–188. doi:10.1016/S0927-7757(99)00026-6

    CAS  Google Scholar 

  117. Van de Manakker F, van der Pot M, Vermonden T, van Nostrum CF, Hennink WE (2008) Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules 41:1766–1773. doi:10.1021/ma702607r

    Google Scholar 

  118. Hashidzume A, Tomatsu I, Harada A (2006) Interaction of cyclodextrins with side chains of water soluble polymers: a simple model for biological molecular recognition and its utilization for stimuli-responsive systems. Polymer 47:6011–6027. doi:10.1016/j.polymer.2006.06.021

    CAS  Google Scholar 

  119. Tomatsu I, Hashidzume A, Harada A (2006) Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based α-cyclodextrin and azobenzene polymers. J Am Chem Soc 128:2226–2227. doi:10.1021/ja058345a

    CAS  Google Scholar 

  120. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511

    Google Scholar 

  121. Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J Am Chem Soc 132:14251–14260. doi:10.1021/ja106362w

    CAS  Google Scholar 

  122. Liu Y, Yu Y, Gao J, Wang Z, Zhang X (2010) Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. Angew Chem Int Ed 49:6576–6579. doi:10.1002/anie.201002415

    CAS  Google Scholar 

  123. Dankers PYW, Hermans TM, Baughman TW, Kamikawa Y, Kieltyka RE, Bastings MMC, Janssen HM, Sommerdijk NAJM, Larsen A, Bosman AW, Popa R, Fytas G, Meijer EW, van Luyn MJA, Popa ER (2012) Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv Mater 24:2703–2709. doi:10.1002/adma.201104072

    CAS  Google Scholar 

  124. Pape ACH, Bastings MMC, Kieltyka RE, Wyss HM, Voets IK, Meijer EW, Dankers PYW (2014) Mesoscale characterization of supramolecular transient networks using SAXS and rheology. Int J Mol Sci 15:1096–1111. doi:10.3390/ijms15011096

    CAS  Google Scholar 

  125. Kieltyka RE, Pape ACH, Albertazzi L, Nakano Y, Bastings MMC, Voets IK, Dankers PYW, Meijer EW (2013) Mesoscale modulation of supramolecular ureidopyrimidinone-based poly(ethylene glycol) transient networks in water. J Am Chem Soc 135:11159–11164. doi:10.1021/ja403745w

    CAS  Google Scholar 

  126. Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136:6969–6977. doi:10.1021/ja500205v

    CAS  Google Scholar 

  127. Dankers PYW, van Luyn MJA, Huizinga-van der Vlag A, van Gemert GML, Petersen AH, Meijer EW, Janssen HM, Bosman AW, Popa ER (2012) Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 33:5144–5155. doi:10.1016/j.biomaterials.2012.03.052

    CAS  Google Scholar 

  128. Kieltyka RE, Bastings MMC, van Almen GC, Besenius P, Kemps EWL, Dankers PYW (2012) Modular synthesis of supramolecular ureidopyrimidinone-peptide conjugates using an oxime ligation strategy. Chem Commun 48:1452–1454. doi:10.1039/c1cc14728e

    CAS  Google Scholar 

  129. Mollet BB, Comellas-Aragones M, Spiering AJH, Sontjens SHM, Meijer EW, Dankers PYW (2014) A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J Mater Chem B 2:2483–2493. doi:10.1039/C3TB21516D

    CAS  Google Scholar 

  130. Dankers PYW, Harmsen MC, Brouwer LA, van Luyn MJA, Meijer EW (2005) A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat Mater 4:568–574. doi:10.1038/nmat1418

    CAS  Google Scholar 

  131. Bastings MMC, Koudstaal S, Kieltyka RE, Nakano Y, Pape ACH, Feyen DAM, van Slochteren FJ, Doevendans PA, Sluijter JPG, Meijer EW, Chamuleau SAJ, Dankers PYW (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthcare Mater 3:70–78. doi:10.1002/adhm.201300076

    CAS  Google Scholar 

  132. Koudstaal S, Bastings MC, Feyen DM, Waring C, van Slochteren F, Dankers PW, Torella D, Sluijter JG, Nadal-Ginard B, Doevendans P, Ellison G, Chamuleau SJ (2014) Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res 7:232–241. doi:10.1007/s12265-013-9518-4

    Google Scholar 

  133. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435:191–194

    CAS  Google Scholar 

  134. Kouwer PHJ, Koepf M, Le Sage VAA, Jaspers M, van Buul AM, Eksteen-Akeroyd ZH, Woltinge T, Schwartz E, Kitto HJ, Hoogenboom R, Picken SJ, Nolte RJM, Mendes E, Rowan AE (2013) Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature. doi:10.1038/nature11839

    Google Scholar 

  135. Birk DE, Bruckner P (2005) Collagen suprastructures. In: Brinckmann J, Notbohm H, Müller PK (eds) Collagen SE-7. Springer, Berlin, pp 185–205

    Google Scholar 

  136. Webber MJ, Tongers J, Renault M-A, Roncalli JG, Losordo DW, Stupp SI (2010) Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 6:3–11. doi:10.1016/j.actbio.2009.07.031

    CAS  Google Scholar 

Download references

Acknowledgments

Our work is funded by the Ministry of Education, Culture and Science (Gravity program 024.001.035), the Netherlands Organisation for Scientific Research (NWO), the European Research Council (FP7/2007–2013) ERC Grant Agreement 308045, and conducted within the LSH TKI framework. The authors thank E.W. Meijer for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Y. W. Dankers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pape, A.C.H., Dankers, P.Y.W. (2015). Supramolecular Hydrogels for Regenerative Medicine. In: Seiffert, S. (eds) Supramolecular Polymer Networks and Gels. Advances in Polymer Science, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-15404-6_7

Download citation

Publish with us

Policies and ethics