Skip to main content

Self-Healing Hydrogels Formed via Hydrophobic Interactions

  • Chapter
Supramolecular Polymer Networks and Gels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 268))

Abstract

Hydrogels are physically or chemically cross-linked polymers with the ability to absorb large amounts of water without dissolving. Elasticity, smartness, and high water sorption capacity make hydrogels extraordinary materials. Although synthetic hydrogels resemble biological tissue, they generally exhibit poor mechanical performance, which limits their use in stress-bearing applications. Hence, synthetic hydrogels that combine good mechanical properties with stimuli-responsiveness and self-healing ability are required for the development of several new technologies. To create such high-toughness hydrogels with self-healing abilities, hydrophobic modification of hydrophilic polymer chains has attracted great interest in recent years. Incorporation of a small amount of hydrophobic units with long alkyl side chains into hydrophilic polymers creates an energy dissipation mechanism. This mechanism appears as a result of the hydrophobic associations, i.e., reversible cross-links within the polymer network. Hydrogels formed via hydrophobic interactions in micellar solutions exhibit unique properties such as a high stretchability (up to 5,000 %), high mechanical strength (up to 1.7 MPa tensile stress), and complete autonomous self-healing ability. Mixed micelles acting as physical cross-links in these hydrogels are formed by dynamic hydrophobic association between the hydrophobic domains of the polymer chains and grown surfactant micelles. This chapter describes some conditions for formation of hydrophobically modified hydrogels with extraordinary mechanical properties and self-healing abilities. Special emphasis is placed on the role of surfactant micelles for the dynamic and mechanical properties of these hydrophobically modified hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAc:

Acrylic acid

AAm:

Acrylamide

AIBN:

2,2′-Azobis(isobutyronitrile)

APS:

Ammonium persulfate

C16M:

N-Hexadecyl methacrylate

C17.3M:

Stearyl methacrylate

C18A:

N-Octadecyl acrylate

C18M:

N-Octadecyl methacrylate

C22A:

Dococyl acrylate

C 0 :

Initial monomer concentration

CTAB:

Cetyltrimethylammonium bromide

D :

Cooperative diffusion coefficient

D A :

Apparent diffusion coefficient

DLS:

Dynamic light scattering

DMA:

N,N-Dimethylacrylamide

DMSO:

Dimethyl sulfoxide

E :

Tensile modulus

f HM :

Mole fraction of hydrophobic monomer in the comonomer feed

f ν :

Fraction of associations broken during the loading

G :

Shear modulus

G(t):

Relaxation modulus

G′:

Elastic modulus

G″:

Viscous modulus

G R :

Rouse modulus

HM:

Hydrophobically modified

<I>E :

Ensemble-averaged scattering intensity

I C(q):

Scattered intensity as a result of the frozen structure

<I(q)>T :

Time-averaged scattering intensity

<I F(q)> T :

Scattered intensity as a result of the liquid-like concentration fluctuations

ICF:

Time average intensity correlation function

m rel :

Relative gel mass

m rel,eq :

Equilibrium swelling ratio

n :

Refractive index

N :

Polymer chain length

N Agg :

Aggregation number of the surfactant

N H :

Number of hydrophobes per hydrophobic block

PAAc:

Poly(acrylic acid)

PAAm:

Polyacrylamide

PDMA:

Poly(N,N-dimethylacrylamide)

q :

Scattering vector

SDS:

Sodium dodecylsulfate

SMS:

Sodium metabisulfite

S n :

Number of hydrophobic blocks per chain

tan δ :

Loss factor (equal to G″/G′)

TEMED:

N,N,N′,N′-Tetramethylethylenediamine

U hys :

Hysteresis energy

U xl :

Average dissociation energy of a single association

β :

Molar ratio of CTAB to the AAc units in the polymer

β 0 :

CTAB/AAc molar ratio in the gelation solution

γ c :

Critical shear rate for shear thickening

Γ fast :

Relaxation rate of the fast mode

γ 0 :

Strain amplitude

Γ slow :

Relaxation rate of the slow mode

η :

Viscosity

η sp :

Specific viscosity

θ :

Scattering angle

λ :

Deformation ratio

λ biax,max :

Maximum biaxial extension ratio

λ f :

Stretch at failure

λ max :

Maximum strain

ν e :

Effective cross-linking density

ξ :

Dynamic correlation length

ξ H :

Hydrodynamic correlation length

σ f :

Fracture stress

σ nom :

Nominal stress

σ true :

True stress

τ :

Decay time

τ 1 :

Lifetime of associations

τ c :

Characteristic time (equal to γ c −1)

τ R :

Characteristic relaxation time (equal to ω c 1)

ω :

Angular frequency

ω c :

Cross-over frequency at which G′ and G″ are equal in oscillatory shear rheology

References

  1. Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators, Springer series on chemical sensors and biosensors, vol 6. Springer, Berlin, pp 1–14

    Google Scholar 

  2. Ahagon A, Gent AN (1975) J Polym Sci Polym Phys Ed 13:1903

    Article  CAS  Google Scholar 

  3. Brown HR (2007) Macromolecules 40:3815

    Article  CAS  Google Scholar 

  4. Abdurrahmanoglu S, Can V, Okay O (2009) Polymer 50:5449

    Article  CAS  Google Scholar 

  5. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155

    Article  CAS  Google Scholar 

  6. Tanaka Y, Gong JP, Osada Y (2005) Prog Polym Sci 30:1

    Article  CAS  Google Scholar 

  7. Okumura Y, Ito K (2001) Adv Mater 13:485

    Article  CAS  Google Scholar 

  8. Miquelard-Garnier G, Demoures S, Creton C, Hourdet D (2006) Macromolecules 39:8128

    Article  CAS  Google Scholar 

  9. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120

    Article  CAS  Google Scholar 

  10. Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H (2007) Adv Mater 19:1622

    Article  CAS  Google Scholar 

  11. Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Macromolecules 43:1191

    Article  CAS  Google Scholar 

  12. Phadke A, Zhang C, Arman B, Hsu C-C, Mashelkar A, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Proc Natl Acad Sci USA 109:4383

    Article  CAS  Google Scholar 

  13. Zhang H, Xia H, Zhao Y (2012) ACS Macro Lett 1:1233

    Article  CAS  Google Scholar 

  14. Cui J, del Campo A (2012) Chem Commun 48:9302

    Article  CAS  Google Scholar 

  15. Liu J, Song G, He C, Wang H (2013) Macromol Rapid Commun 34:1002

    Article  CAS  Google Scholar 

  16. Haraguchi K, Uyama K, Tanimoto H (2011) Macromol Rapid Commun 32:1253

    Article  CAS  Google Scholar 

  17. South AB, Lyon LA (2010) Angew Chem Int Ed 49:767

    Article  CAS  Google Scholar 

  18. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okura K, Kinbara K, Aida T (2010) Nature 463:339

    Article  CAS  Google Scholar 

  19. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Money DJ, Vlassak JJ, Suo Z (2012) Nature 489:133

    Article  CAS  Google Scholar 

  20. Foo CTSWP, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Proc Natl Acad Sci USA 106:22067

    Article  CAS  Google Scholar 

  21. Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) J Am Chem Soc 132:14251

    Article  CAS  Google Scholar 

  22. Skrzeszewska PJ, Sprakel J, Wolf FA, Fokkink R, Stuart MAC, van de Gucht J (2010) Macromolecules 43:3542

    Article  CAS  Google Scholar 

  23. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) Proc Natl Acad Sci USA 108:2651

    Article  CAS  Google Scholar 

  24. Shafiq Z, Cui J, Pastor-Perez L, San Miguel V, Gropeanu RA, Serrano C, del Campo A (2012) Angew Chem Int Ed 124:4408

    Article  Google Scholar 

  25. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) ACS Nano 4:7358

    Article  CAS  Google Scholar 

  26. Liu F, Li F, Deng G, Chen Y, Zhang B, Zhang J, Liu C-Y (2012) Macromolecules 45:1636

    Article  CAS  Google Scholar 

  27. Zhang Y, Tao L, Li S, Wei Y (2011) Biomacromolecules 12:2894

    Article  CAS  Google Scholar 

  28. He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) Chem Commun 47:7497

    Article  CAS  Google Scholar 

  29. Froimowicz P, Klinger D, Landfester K (2011) Chem Eur J 17:12465

    Article  CAS  Google Scholar 

  30. Quint SB, Pacholski C (2011) Soft Matter 7:3735

    Article  CAS  Google Scholar 

  31. Abdurrahmanoglu S, Cilingir M, Okay O (2011) Polymer 52:694

    Article  CAS  Google Scholar 

  32. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Macromolecules 44:4997

    Article  CAS  Google Scholar 

  33. Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Macromolecules 45:1991

    Article  CAS  Google Scholar 

  34. Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Polymer 53:5513

    Article  CAS  Google Scholar 

  35. Tuncaboylu DC, Argun A, Algi MP, Okay O (2013) Polymer 54:6381

    Article  CAS  Google Scholar 

  36. Baskan T, Tuncaboylu DC, Okay O (2013) Polymer 54:2979

    Article  CAS  Google Scholar 

  37. Akay G, Hassan-Raeisi A, Tuncaboylu DC, Orakdogen N, Abdurrahmanoglu S, Oppermann W, Okay O (2013) Soft Matter 9:2254

    Article  CAS  Google Scholar 

  38. Bilici C, Okay O (2013) Macromolecules 46:3125

    Article  CAS  Google Scholar 

  39. Gulyuz U, Okay O (2013) Soft Matter 9:10287

    Article  CAS  Google Scholar 

  40. Argun A, Algi MP, Tuncaboylu DC, Okay O (2014) Colloid Polym Sci 292:511

    Article  CAS  Google Scholar 

  41. Algi MP, Okay O (2014) Eur Polym J 59:113

    Article  CAS  Google Scholar 

  42. Gulyuz U, Okay O (2014) Macromolecules 47:6889

    Article  CAS  Google Scholar 

  43. Tanaka F, Edwards SF (1992) Macromolecules 25:1516

    Article  CAS  Google Scholar 

  44. Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) J Rheol 37:695

    Article  CAS  Google Scholar 

  45. Bell GI (1978) Science 178:618

    Article  Google Scholar 

  46. Pham QT, Russel WB, Thibeault JC, Lau W (1999) Macromolecules 32:5139

    Article  CAS  Google Scholar 

  47. Tripathi A, Tam KC, McKinley GH (2006) Macromolecules 39:1981

    Article  CAS  Google Scholar 

  48. Tian J, Seery TAP, Weiss RA (2004) Macromolecules 37:10001

    Article  CAS  Google Scholar 

  49. Hao J, Weiss RA (2011) Macromolecules 44:9390

    Article  CAS  Google Scholar 

  50. Matsuda A, Sato J, Yasunaga H, Osada Y (1994) Macromolecules 27:7695

    Article  CAS  Google Scholar 

  51. Hill A, Candau F, Selb J (1993) Macromolecules 26:4521

    Article  CAS  Google Scholar 

  52. Volpert E, Selb J, Candau F (1998) Polymer 39:1025

    Article  CAS  Google Scholar 

  53. Regalado EJ, Selb J, Candau F (1999) Macromolecules 32:8580

    Article  CAS  Google Scholar 

  54. Candau F, Selb J (1999) Adv Colloid Interface Sci 79:149

    Article  CAS  Google Scholar 

  55. Gao B, Guo H, Wang J, Zhang Y (2008) Macromolecules 41:2890

    Article  CAS  Google Scholar 

  56. Candau F, Regalado EJ, Selb J (1998) Macromolecules 31:5550

    Article  CAS  Google Scholar 

  57. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2004) J Polym Sci B Polym Phys 42:1640

    Article  CAS  Google Scholar 

  58. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Macromolecules 39:384

    Article  CAS  Google Scholar 

  59. Beyer K, Leine D, Blume A (2006) Colloids Surf B Biointerfaces 49:31

    Article  CAS  Google Scholar 

  60. Chern CS, Chen TJ (1998) Colloids Surf A Physicochem Eng Aspects 138:65

    Article  CAS  Google Scholar 

  61. Leyrer RJ, Machtle W (2000) Macromol Chem Phys 201:1235

    Article  CAS  Google Scholar 

  62. Lau W (2002) Macromol Symp 182:283

    Article  CAS  Google Scholar 

  63. Rehage H, Hoffman H (1991) Mol Phys 74:933

    Article  CAS  Google Scholar 

  64. Magid LJ (1998) J Phys Chem B 102:4064

    Article  CAS  Google Scholar 

  65. Hassan PA, Raghauan SR, Kaler EW (2002) Langmuir 18:2543

    Article  CAS  Google Scholar 

  66. Missel PJ, Mazer NA, Benedek GB, Young CY (1980) J Phys Chem 84:1044

    Article  CAS  Google Scholar 

  67. Sutherland E, Mercer SM, Everist M, Leaist D (2009) J Chem Eng Data 54:272

    Article  CAS  Google Scholar 

  68. Mazer NA, Benedek GB, Carey MC (1976) J Phys Chem 80:1075

    Article  CAS  Google Scholar 

  69. Young CY, Missel PJ, Mazer NA, Benedek GB, Carey MC (1978) J Phys Chem 82:1375

    Article  CAS  Google Scholar 

  70. Pecora R (1985) Dynamic light scattering: application of photon correlation spectroscopy. Plenum, New York

    Book  Google Scholar 

  71. Molchanov VS, Philippova OE, Khokhlov AR, Kovalev YA, Kuklin AI (2007) Langmuir 23:105

    Article  CAS  Google Scholar 

  72. Kumar S, Bansal D, Din K (1999) Langmuir 15:4960

    Article  CAS  Google Scholar 

  73. Kunieda H, Ozawa K, Huang K-L (1998) J Phys Chem B 102:831

    Article  CAS  Google Scholar 

  74. Siriwatwechakul W, LaFleur T, Prud’homme RK, Sullivan P (2004) Langmuir 20:8970

    Article  CAS  Google Scholar 

  75. Sato T, Acharya DP, Kaneko M, Aramaki K, Singh Y, Ishitobi M, Kunieda HJ (2006) J Dispers Sci Technol 27:611

    Article  CAS  Google Scholar 

  76. Törnblom M, Henriksson U, Ginley M (1994) J Phys Chem 98:7041

    Article  Google Scholar 

  77. Wang F, Chen T, Shang Y, Liu H (2011) Korean J Chem Eng 28:923

    Article  CAS  Google Scholar 

  78. Zhang S, Teng HN (2008) Colloid J 70:105

    Article  CAS  Google Scholar 

  79. Tah B, Pal P, Mahato M, Talapatra GB (2011) J Phys Chem B 115:8493

    Article  CAS  Google Scholar 

  80. Marrucci G, Bhargava S, Cooper SL (1993) Macromolecules 26:6483

    Article  CAS  Google Scholar 

  81. Patruyo LG, Muller AJ, Saez AE (2002) Polymer 43:6481

    Article  CAS  Google Scholar 

  82. Penott-Chang EK, Gouveia L, Fernandez IJ, Muller AJ, Diaz-Barrios AD, Saez AE (2007) Colloids Surf A Physicochem Eng Aspects 295:99

    Article  CAS  Google Scholar 

  83. Magny B, Iliopoulos I, Zana R, Audebert R (1994) Langmuir 10:3180

    Article  CAS  Google Scholar 

  84. Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1996) Macromolecules 29:2822

    Article  CAS  Google Scholar 

  85. Hayashi S, Ikeda S (1980) J Phys Chem 84:744

    Article  CAS  Google Scholar 

  86. Patist A, Oh SG, Leung R, Shah DO (2001) Colloids Surf A Physicochem Eng Aspects 176:3

    Article  CAS  Google Scholar 

  87. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  88. Gurtovenko AA, Gotlib YY (2001) J Chem Phys 115:6785

    Article  CAS  Google Scholar 

  89. Ng TSK, McKinley GH (2008) J Rheol 52:417

    Article  CAS  Google Scholar 

  90. Bastide J, Candau SJ (1996) Structure of gels as investigated by means of static scattering techniques. In: Cohen Addad JP (ed) Physical properties of polymeric gels. Wiley, New York, p 143

    Google Scholar 

  91. Shibayama M (1998) Macromol Chem Phys 199:1

    Article  CAS  Google Scholar 

  92. Shibayama M, Ikkai F, Nomura S (1994) Macromolecules 27:6383

    Article  CAS  Google Scholar 

  93. Lindemann B, Schröder UP, Oppermann W (1997) Macromolecules 30:4073

    Article  CAS  Google Scholar 

  94. Kizilay MY, Okay O (2003) Macromolecules 36:6856

    Article  CAS  Google Scholar 

  95. Joosten JGH, Mccarthy JL, Pusey PN (1991) Macromolecules 24:6690

    Article  CAS  Google Scholar 

  96. Pusey PN, van Megen W (1989) Phys A 157:705

    Article  CAS  Google Scholar 

  97. Ikkai F, Shibayama M (1999) Phys Rev Lett 82:4946

    Article  CAS  Google Scholar 

  98. Webber RE, Creton C, Brown HR, Gong JP (2007) Macromolecules 40:2919

    Article  CAS  Google Scholar 

  99. Lake GJ, Thomas AG (1967) Proc R Soc Lond A 300:108

    Article  CAS  Google Scholar 

  100. Ng WK, Tam KC, Jenkins RD (2000) J Rheol 44:137

    Article  CAS  Google Scholar 

  101. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  102. Treloar LRG (1975) The physics of rubber elasticity. University Press, Oxford

    Google Scholar 

  103. Livshin S, Silverstein MS (2007) Macromolecules 40:6349

    Article  CAS  Google Scholar 

  104. Biggs S, Selb J, Candau F (1993) Polymer 34:580

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK, KBAG–114Z312). The author thanks the Turkish Academy of Sciences (TUBA) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Okay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okay, O. (2015). Self-Healing Hydrogels Formed via Hydrophobic Interactions. In: Seiffert, S. (eds) Supramolecular Polymer Networks and Gels. Advances in Polymer Science, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-15404-6_3

Download citation

Publish with us

Policies and ethics