Skip to main content

Fiber-Reinforced Dental Materials in the Restoration of Root-Canal Treated Teeth

  • Chapter

Abstract

Fiber-reinforced composites (FRC) are a group of lightweight metal-free dental materials characterized by their anisotropic nature. They are relatively low-cost, tooth-colored materials that are compatible with the use of adhesive and direct restorative techniques. Contemporary dental FRCs are predominantly based on glass fibers and dimethacrylate resins. For optimal clinical performance, it is crucial that the properties and behavior of these composite materials are well understood. In an FRC, the fibers provide strength and stiffness, while the matrix polymer binds the fibers together, forming a continuous phase around the reinforcement. For optimal mechanical properties, the fibers must be well adhered to and well impregnated by the matrix polymer. Other factors influencing the mechanical, optical, and bonding properties of FRCs include the type of fiber and matrix polymer, quantity, positioning, and orientation of fibers. Contemporary dental FRCs can be based on either unidirectional or multidirectional long continuous fibers or short discontinuous fibers. FRCs offer several benefits in restoring root-canal treated (RCT) teeth. Elastic modulus close to that of natural dentin, high tensile strength, and the suitability for cost-effective chairside techniques make fiber-reinforced composites well suited in the restoration of structurally compromised RCT teeth.

Keywords

  • Root Canal
  • Fiber Volume Fraction
  • Resin Cement
  • Dental Resin
  • Restorative Composite

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15401-5_4
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15401-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9

References

  • Ahlstrand WM, Finger WJ (2002) Direct and indirect fiber-reinforced fixed partial dentures: case reports. Quintessence Int 33:359–365

    PubMed  Google Scholar 

  • Alander P, Lassila LVJ, Tezvergil A, Vallittu PK (2004) Acoustic emission analysis of fiber-reinforced composite in flexural testing. Dent Mater 20:305–312

    CrossRef  PubMed  Google Scholar 

  • Al-Harbi F, Nathanson D (2003) In vitro assessment of retention of four esthetic dowels to resin core foundation and teeth. J Prosthet Dent 90:547–555

    CrossRef  PubMed  Google Scholar 

  • Ballo AM, Akca EA, Ozen T, Lassila LVJ, Vallittu PK, Närhi TO (2009) Bone tissue responses to glass fiber-reinforced composite implants – a histomorphometric study. Clin Oral Impl Res 20:608–615

    Google Scholar 

  • Beech D, Brown D (1972) The role of the filler-matrix interface in composite restorative materials based on polymethylmethacrylate. Br Dent J 133:297–300

    CrossRef  PubMed  Google Scholar 

  • Behr M, Rosentritt M, Lang R, Handel G (2000) Flexural properties of fiber reinforced composite using a vacuum/pressure or a manual adaptation manufacturing process. J Dent 28:509–514

    CrossRef  PubMed  Google Scholar 

  • Bitter K, Noetzel J, Neumann K, Kielbassa AM (2007) Effect of silanization on bond strengths of fiber posts to various resin cements. Quintessence Int 38:121–128

    PubMed  Google Scholar 

  • Cheng YY, Chow TW (1999) Fabrication of complete denture bases reinforced with polyethylene woven fabric. J Prosthodont 8:268–272

    CrossRef  PubMed  Google Scholar 

  • Corsalini M, Genovese K, Lamberti L, Pappalettere C, Carella M, Carossa S (2007) A laboratory comparison on individual Targis/Vectris posts with standard fiberglass posts. Int J Prosthodont 20:190–192

    PubMed  Google Scholar 

  • Creugers NHJ, Mentnik A, Fokkinga WA, Kreulen CM (2005) 5-year follow-up of a prospective clinical study on various types of core restorations. Int J Prosthodont 18:34–39

    PubMed  Google Scholar 

  • Dallari A, Rovatti L, Dallari B, Mason PN, Suh BI (2006) Translucent quartz-fiber post luted in vivo with self-curing composite cement: case report and microscopic examination at a two-year clinical follow-up. J Adhes Dent 8:189–195

    PubMed  Google Scholar 

  • Ehrenstein G, Schmiemann A, Bledzki A, Spaude R (1990) Corrosion phenomena in glass-fiber-reinforced thermosetting resins. In: Cheremisinoff N (ed) Handbook of ceramics and composites. Marcel Dekker, New York, pp 231–268

    Google Scholar 

  • Fennis WM, Tezvergil A, Kuijs RH, Lassila LV, Kreulen CM, Creugers NH, Vallittu PK (2005) In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations. Dent Mater 21:565–572

    CrossRef  PubMed  Google Scholar 

  • Ferrari M, Vichi A, Mannocci F, Mason PN (2000) Retrospective study of the clinical performance of fiber posts. Am J Dent 13:9B–13B

    PubMed  Google Scholar 

  • Fokkinga WA, Kreulen CM, Vallittu PK, Creugers NHJ (2004) A structured analysis of in vitro failure loads and failure modes of fiber, metal and ceramic post-and-core systems. Int J Prosthodont 17:476–482

    PubMed  Google Scholar 

  • Fredriksson M, Astbäck J, Pamenius M, Arvidson K (1998) A retrospective study of 236 patients with teeth restored by carbon fiber-reinforced epoxy resin posts. J Prosthet Dent 80:151–157

    CrossRef  PubMed  Google Scholar 

  • Freilich MA, Karmarker AC, Burstone CJ, Goldberg AJ (1998a) Development and clinical application of a light-polymerized fiber-reinforced composite. J Prosthet Dent 80:311–318

    CrossRef  PubMed  Google Scholar 

  • Freilich MA, Duncan JP, Meiers JC, Goldberg AJ (1998b) Preimpregnated fiber-reinforced prostheses. Part I. Basic rationale and complete coverage and intra-coronal fixed partial denture design. Quintessence Int 29:689–696

    PubMed  Google Scholar 

  • Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ (2002) The design and fabrication of fiber-reinforced implant prostheses. J Prosthet Dent 88:449–454

    CrossRef  PubMed  Google Scholar 

  • Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK (2005) Load bearing capacity of fibre-reinforced and particulate filler composite resin combination. J Dent 34:179–184

    Google Scholar 

  • Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK (2006) Fiber-reinforced composite substructure: load bearing capacity of an onlay restoration and flexural properties of the material. J Contemp Dent Pract 7:1–8

    Google Scholar 

  • Garoushi S, Vallittu PK, Lassila LVJ (2007) Fracture resistance of short random oriented glass fiber reinforced composite premolar crown. Acta Biomater 3:779–784

    CrossRef  PubMed  Google Scholar 

  • Garoushi S, Tanner J, Vallittu PK, Lassila L (2012) Preliminary clinical evaluation of short fiber-reinforced composite resin in posterior teeth: 12-months report. Open Dent J 6:41–45

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Garoushi S, Säilynoja E, Vallittu PK, Lassila LVJ (2013) Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 29:835–841

    CrossRef  PubMed  Google Scholar 

  • Grandini S, Sapio S, Simonetti M (2003) Use of anatomic post and core for reconstructing an endodontically treated tooth: a case report. J Adhes Dent 5:243–247

    PubMed  Google Scholar 

  • Grandini S, Goracci C, Tay FR, Grandini R, Ferrari M (2005) Clinical evaluation of the use of fiber posts and direct resin restorations for endodontically treated teeth. Int J Prosthodont 18:399–404

    PubMed  Google Scholar 

  • Gutteridge D (1992) Reinforcement of poly(methyl methacrylate) with ultra-high-modulus-polyethylene fibers. J Dent 20:50–54

    CrossRef  PubMed  Google Scholar 

  • Guzy GE, Nicholls JI (1979) In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 42:39–44

    CrossRef  PubMed  Google Scholar 

  • Göhring TN, Schmidlin PR, Lutzt F (2002) Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures. Am J Dent 15:35–40

    PubMed  Google Scholar 

  • Hatta M, Shinya A, Vallittu PK, Shinya A, Lassila LV (2011) High volume individual fibre post versus low volume fibre post: the fracture load of the restored tooth. J Dent 39:65–71

    CrossRef  PubMed  Google Scholar 

  • Hedlund SO, Johansson NG, Sjögren G (2003) A retrospective study of pre-fabricated carbon fibre root canal posts. J Oral Rehabil 30:1036–1040

    CrossRef  PubMed  Google Scholar 

  • Isidor F, Odman P, Brøndum K (1996) Intermittent loading of teeth restored using prefabricated carbon fiber posts. Int J Prosthodont 9:131–136

    PubMed  Google Scholar 

  • Jancar J, Dibenedetto AT (1993) Fibre reinforced thermoplastic composites for dentistry. Part I Hydrolytic stability of the interface. J Mater Sci Mater Med 4:555–561

    CrossRef  Google Scholar 

  • Kallio TT, Lastumäki TM, Vallittu PK (2001) Bonding of restorative and veneering composite resin to some polymeric composites. Dent Mater 17:80–86

    CrossRef  PubMed  Google Scholar 

  • Kallio TT, Lastumäki TM, Vallittu PK (2003) Effect of resin application time on bond strength of polymer substrate repaired with particulate filler composite. J Mater Sci Mater Med 14:999–1004

    CrossRef  PubMed  Google Scholar 

  • Kardos JL (1993) Short-fiber-reinforced polymeric composites, structure–property relations. In: Lee SM (ed) Handbook of composites. Wiley-VCH, Palo Alto, p 593

    Google Scholar 

  • Kirzioĝlu Z, Ertük MS (2004) Success of reinforced fiber material space maintainer. J Dent Child (Chic) 71:158–162

    Google Scholar 

  • Kolbeck C, Rosentritt M, Behr M, Lang R, Handel G (2002) In vitro examination of the fracture strength of 3 different fiber- reinforced composite and 1 all-ceramic posterior inlay fixed partial denture systems. J Prosthodont 11:248–253

    CrossRef  PubMed  Google Scholar 

  • Krause WR, Park SH, Straup RA (1999) Mechanical properties of BIS-GMA resin short glass fiber composites. J Biomed Mater Res 23:1195–1211

    CrossRef  Google Scholar 

  • Ladizesky NH, Chow TW, Ward IM (1990) The effect of highly drawn polyethylene fibres on the mechanical properties of denture base resins. Clin Mater 6:209–225

    CrossRef  PubMed  Google Scholar 

  • Ladizesky NH, Ho CF, Chow TW (1992) Reinforcement of complete denture bases with continuous high performance polyethylene fibers. J Prosthet Dent 68:934–939

    CrossRef  PubMed  Google Scholar 

  • Lammi M, Tanner J, Le Bell-Rönnlöf A, Lassila L, Vallittu P (2011) Restoration of endodontically treated molars using fiber reinforced composite substructure. J Dent Res 90(Spec Iss A): Abst 2517

    Google Scholar 

  • Lassila LVJ, Nohrström T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23:2221–2229

    CrossRef  PubMed  Google Scholar 

  • Lastumäki T, Lassila L, Vallittu PK (2001) Flexural properties of bulk fiber-reinforced composite DC-Tell used in fixed partial dentures. Int J Prosthodont 14:22–26

    PubMed  Google Scholar 

  • Lastumäki TM, Kallio TT, Vallittu PK (2002) The bond strength of light-curing composite resin to finally polymerized and aged glass fiber-reinforced composite substrate. Biomaterials 23:4533–4539

    CrossRef  PubMed  Google Scholar 

  • Lastumäki TM, Lassila LV, Vallittu PK (2003) The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties. J Mater Sci Mater Med 14:803–809

    CrossRef  PubMed  Google Scholar 

  • Le Bell AM, Tanner J, Lassila LV, Kangasniemi I, Vallittu PK (2003) Depth of light-initiated polymerization of glass fiber-reinforced composite in a simulated root canal. Int J Prosthodont 16:403–408

    PubMed  Google Scholar 

  • Le Bell AM, Tanner J, Lassila LVJ, Kangasniemi I, Vallittu PK (2004) Bonding of composite resin luting cement to fiber-reinforced composite root canal post. J Adhes Dent 6:319–325

    PubMed  Google Scholar 

  • Le Bell AM, Lassila LV, Kangasniemi I, Vallittu PK (2005) Bonding of fibre-reinforced composite post to root canal dentin. J Dent 33:533–539

    CrossRef  PubMed  Google Scholar 

  • Le Bell-Rönnlöf AM, Lassila LV, Kangasniemi I, Vallittu PK (2011) Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts. Dent Mater 27:e107–e115

    CrossRef  PubMed  Google Scholar 

  • Lassila LV, Tanner J, Le Bell AM, Narva K, Vallittu PK (2004) Flexural properties of fiber reinforced root canal posts. Dent Mater 20:29–36

    CrossRef  PubMed  Google Scholar 

  • Love RM, Purton DG (1996) The effect of serrations on carbon fiber posts-retention within the root canal, core retention, and post rigidity. Int J Prosthodont 9:484–488

    PubMed  Google Scholar 

  • Makarewicz D, Le Bell-Rönnlöf AM, Lassila LV, Vallittu PK (2013) Effect of cementation technique of individually formed fiber-reinforced composite post on bond strength and microleakage. Open Dent J 7:68–75

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Mannocci F, Innocenti M, Ferrari M, Watson TF (1999a) Confocal and scanning electron microscopic study of teeth restored with fiber posts, metal posts, and composite resins. J Endod 25:789–794

    CrossRef  PubMed  Google Scholar 

  • Mannocci F, Ferrari M, Watson TF (1999b) Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber and zirconium dioxide ceramic root canal posts. J Adhes Dent 1:153–158

    PubMed  Google Scholar 

  • Mannocci F, Sheriff M, Watson TF, Vallittu PK (2005) Penetration of bonding resins into fibre-reinforced posts: a confocal microscopic study. Int Endod J 38:46–51

    CrossRef  PubMed  Google Scholar 

  • Matinlinna JP, Lassila LV, Özcan M, Yli-Urpo A, Vallittu PK (2004) An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont 17:155–164

    PubMed  Google Scholar 

  • Meiers JC, Duncan JP, Freilich MA, Goldberg AJ (1998) Preimpregnated fiber-reinforced prostheses. Part II. Direct applications: splints and fixed partial dentures. Quintessence Int 29:761–768

    PubMed  Google Scholar 

  • Meiers JC, Freilich MA (2000) Conservative anterior tooth replacement using fiber-reinforced composite. Oper Dent 25:239–243

    PubMed  Google Scholar 

  • Meiers JC, Freilich MA (2006) Use of a prefabricated fiber-reinforced composite resin framework to provide a provisional fixed partial denture over an integrating implant: a clinical report. J Prosthet Dent 95:14–18

    Google Scholar 

  • Murphy J (1998) Reinforced plastics handbook, 2nd edn. Elsevier Advanced Technology, Oxford, UK

    Google Scholar 

  • Özcan M, van der Sleen JM, Kurunmäki H, Vallittu PK (2006) Comparison of repair methods for ceramic-fused-to-metal crowns. J Prosthodont 15:283–288

    CrossRef  PubMed  Google Scholar 

  • Pegoretti A, Fambri L, Zappini G, Bianchetti M (2002) Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 23:2667–2682

    CrossRef  PubMed  Google Scholar 

  • Petersen RC (2005) Discontinuous fiber-reinforced composites above critical length. J Dent Res 84:365–370

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Purton DG, Payne JA (1996) Comparison of carbon fiber and stainless steel root canal posts. Quintessence Int 27:93–97

    PubMed  Google Scholar 

  • Qualthrough AJ, Chandler NP, Purton DG (2003) A comparison of the retention of tooth colored posts. Quintessence Int 34:199–201

    Google Scholar 

  • Qualthrough AJ, Mannocci F (2003) Tooth-colored post systems: a review. Oper Dent 28:86–91

    Google Scholar 

  • Rantala LI, Lastumäki TM, Peltomäki T, Vallittu PK (2003) Fatigue resistance of orthodontic appliance reinforced with glass fiber weave. J Oral Rehabil 30:501–506

    CrossRef  PubMed  Google Scholar 

  • Sahafi A, Peutzfeldt A, Asmussen E, Gotfredsen K (2003) Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J Adhes Dent 5:153–162

    PubMed  Google Scholar 

  • Schmitter M, Rammelsberg P, Gabbert O, Ohlmann B (2007) Influence of clinical baseline findings on the survival of 2 post systems: a randomized clinical trial. Int J Prosthodont 20:173–178

    PubMed  Google Scholar 

  • Schmitter M, Hamadi K, Rammelsberg P (2011) Survival of two post systems – Five year results of a randomized clinical trial. Quintessence Int 42:843–850

    Google Scholar 

  • Schreiber CK (1971) Polymethylmethacrylate reinforced with carbon fibers. Br Dent J 130:29–30

    CrossRef  PubMed  Google Scholar 

  • Schwickerath H (1965) Glasfaser und Kunststoffverstärkung. Zahnarztl Welt Zahnarztl Rundsch ZWR Zahnarztl Reform 66:364–367

    Google Scholar 

  • Segerström S, Astbäck J, Ekstrand KD (2006) A retrospective long term study of teeth restored with prefabricated carbon fiber reinforced epoxy resin posts. Swed Dent J 30:1–8

    PubMed  Google Scholar 

  • Sewón LA, Ampula L, Vallittu PK (2000) Rehabilitation of a periodontal patient with rapidly progressing marginal alveolar bone loss. A case report. J Clin Periodontol 27:615–619

    CrossRef  PubMed  Google Scholar 

  • Smith DC (1962) Recent developments and prospects in dental polymers. J Prosthet Dent 12:1066–1078

    CrossRef  Google Scholar 

  • Soares CJ, Pereira JC, Valdivia ADCM, Novais VR, Meneses MS (2012) Influence of resin cement and post configuration on bond strength to root dentin. Int Endod J 45:136–145

    CrossRef  PubMed  Google Scholar 

  • Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks, 1st edn. American Chemical Society, Washington, pp 3–39, 356

    CrossRef  Google Scholar 

  • Tanner J, Carlén A, Söderling E, Vallittu PK (2003) Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater 15:391–398

    CrossRef  Google Scholar 

  • Tanner J, Robinson C, Söderling E, Vallittu P (2005) Early plaque formation on fibre-reinforced composites in vivo. Clin Oral Investig 9:154–160

    CrossRef  PubMed  Google Scholar 

  • Terry DA, Triolo PT, Swift EJ (2001) Fabrication of direct fiber-reinforced posts: a structural design concept. J Esthet Restor Dent 13:228–240

    CrossRef  PubMed  Google Scholar 

  • Tezvergil A, Lassila LV, Vallittu PK (2006) The effect of fiber orientation on the polymerization shrinkage strain of fiber-reinforced composites. Dent Mater 22:610–616

    CrossRef  PubMed  Google Scholar 

  • Torbjörner A (2000) Post and cores. In: Karlsson S, Nilner K, Dahl B (eds) A textbook of fixed prosthodontics: The Scandinavian approach. Förlagshuset Gothia AB, Stockholm, pp 173–186

    Google Scholar 

  • Torbjörner A, Fransson B (2004) A literature review on the prosthetic treatment of structurally compromised teeth. Int J Prosthodont 17:369–376

    PubMed  Google Scholar 

  • Torbjörner A, Karlsson S, Syverud M, Hensten-Pettersson A (1996) Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties. Eur J Oral Sci 104:605–611

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1993) Comparison of two different silane compounds used for improving adhesion between fibers and acrylic denture base material. J Oral Rehabil 20:533–539

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1995a) The effect of void space and polymerization time on transverse strength of acrylic-glass fiber composite. J Oral Rehabil 22:257–261

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1995b) Impregnation of glass fibers with polymethylmethacrylate using powder-coating method. Appl Compos Mater 2:51–58

    CrossRef  Google Scholar 

  • Vallittu PK (1996) Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires. J Prosthodont 5:115–121

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1997a) Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study. Quintessence Int 28:39–44

    PubMed  Google Scholar 

  • Vallittu PK (1997b) Oxygen inhibition of autopolymerization of polymethylmethacrylate-glass fiber composite. J Mater Sci Mater Med 8:489–492

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1997c) Transverse strength, ductility, and qualitative elemental analysis of cobalt-chromium alloy after various durations of induction melting. J Prosthodont 6:55–60

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1998a) Some aspects of the tensile strength of unidirectional glass fibre-polymethyl methacrylate composite used in dentures. J Oral Rehabil 25:100–105

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (1998b) Compositional and weave pattern analyses of glass fibers in dental polymer fiber composites. J Prosthodont 7:170–176

    CrossRef  PubMed  Google Scholar 

  • Valittu PK (2000) Effect of 180-week water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 13:334–339

    Google Scholar 

  • Vallittu PK (2007) Effect of 10 years of in vitro aging on the flexural properties of fiber-reinforced resin composites. Int J Prosthodont 20:43–45

    PubMed  Google Scholar 

  • Vallittu PK (2015) High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dent Mater 31:1–7

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK (2014) Glass fibers in fiber-reinforced composites. In: Matinlinna J (ed) Handbook of oral biomaterials, Pan Stanford Publishing Pte Ltd, Singapore, pp 255–279

    Google Scholar 

  • Vallittu PK, Narva K (1997) Impact strength of a modified continuous glass fiber-polymethylmethacrylate. Int J Prosthodont 10:142–148

    PubMed  Google Scholar 

  • Vallittu PK, Sevelius C (2000) Resin-bonded, glass fiber-reinforced composite fixed partial dentures: a clinical study. J Prosthet Dent 84:413–418

    CrossRef  PubMed  Google Scholar 

  • Vallittu PK, Ruyter IE, Ekstrand K (1998) Effect of water storage the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 11:340–350

    PubMed  Google Scholar 

  • Zhao DS, Moritz N, Laurila P, Mattila R, Lassila LVJ, Strandberg N, Mäntylä T, Vallittu PK, Aro HT (2009) Development of a biomechanically optimized multi-component fiber-reinforced composite implant for load-sharing conditions. Med Eng Phys 31:461–491

    Google Scholar 

  • Zicari F, Coutinho E, Scotti R, Van Meerbeek B, Naert I (2013) Mechanical properties and micro-morphology of fiber posts. Dent Mater 29:e45–e52

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Tanner DDS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanner, J., Le Bell-Rönnlöf, AM. (2016). Fiber-Reinforced Dental Materials in the Restoration of Root-Canal Treated Teeth. In: Perdigão, J. (eds) Restoration of Root Canal-Treated Teeth. Springer, Cham. https://doi.org/10.1007/978-3-319-15401-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15401-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15400-8

  • Online ISBN: 978-3-319-15401-5

  • eBook Packages: MedicineMedicine (R0)