Skip to main content

Effect of Endodontic Treatment Procedures on Canal Shape and Mechanical Properties of a Tooth

  • Chapter
  • 1839 Accesses

Abstract

Endodontic treatment procedures induce changes in tooth structure and may shift stress distributions in treated roots that make them more prone to fracture. This chapter discusses mechanical properties and changes in dentin characteristics and shape of the root canal caused by root canal therapy. Moisture, irrigants, medicaments, obturation materials, temperature rise, and canal taper may induce these changes.

Keywords

  • Root Canal
  • Dentinal Tubule
  • Canal Wall
  • Endodontic Treatment
  • Root Canal Treatment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15401-5_2
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15401-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  • Abou El Nasr HM, Abd El Kader KG (2014) Dentinal damage and fracture resistance of oval roots prepared with single-file systems using different kinematics. J Endod 40:849–851

    CrossRef  PubMed  Google Scholar 

  • Adorno CG, Yoshioka T, Suda H (2009) The effect of root preparation technique and instrumentation length on the development of apical root cracks. J Endod 35:389–392

    CrossRef  PubMed  Google Scholar 

  • Amade ES, Novais VR, Roscoe MG, Azevedo FM, Bicalho AA, Soares CJ (2013) Root dentin strain and temperature rise during endodontic treatment and post rehabilitation. Braz Dent J 24:591–598

    CrossRef  PubMed  Google Scholar 

  • Arslan H, Karatas E, Capar ID, Ozsu D, Doğanay E (2014) Effect of ProTaper Universal, Endoflare, Revo-S, HyFlex coronal flaring instruments, and Gates Glidden drills on crack formation. J Endod 40:1681–1683

    CrossRef  PubMed  Google Scholar 

  • Ashwinkumar V, Krithikadatta J, Surendran S, Velmurugan N (2014) Effect of reciprocating file motion on microcrack formation in root canals: an SEM study. Int Endod J 47:622–627

    CrossRef  PubMed  Google Scholar 

  • Barreto MS, Moraes Rdo A, Rosa RA, Moreira CH, Só MV, Bier CA (2012) Vertical root fractures and dentin defects: effects of root canal preparation, filling, and mechanical cycling. J Endod 38:1135–1139

    CrossRef  PubMed  Google Scholar 

  • Bier CA, Shemesh H, Tanomaru-Filho M, Wesselink PR, Wu MK (2009) The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation. J Endod 35:236–238

    CrossRef  PubMed  Google Scholar 

  • Blum JY, Cohen A, Machtou P, Micallef JP (1999) Analysis of forces developed during mechanical preparation of extracted teeth using Profile NiTi rotary instruments. Int Endod J 32:24–31

    CrossRef  PubMed  Google Scholar 

  • Brauer DS, Hilton JF, Marshall GW, Marshall SJ (2011) Nano- and micromechanical properties of dentine: investigation of differences with tooth side. J Biomech 44:1626–1629

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Brito-Junior M, Pereira RD, Verissimo C, Soares CJ, Faria-e-Silva AL, Camilo CC, Sousa-Neto MD (2014) Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate. Int Endod J 47:958–966

    CrossRef  PubMed  Google Scholar 

  • Bürklein S, Tsotsis P, Schäfer E (2013) Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation. J Endod 39:501–504

    CrossRef  PubMed  Google Scholar 

  • Carter JM, Sorensen SE, Johnson RR, Teitelbaum RL, Levine MS (1983) Punch shear testing of extracted vital and endodontically treated teeth. J Biomech 16:841–848

    CrossRef  PubMed  Google Scholar 

  • Carvalho RM, Fernandes CA, Villanueva R, Wang L, Pashley DH (2001) Tensile strength of human dentin as a function of tubule orientation and density. J Adhes Dent 3:309–314

    PubMed  Google Scholar 

  • Chatvanitkul C, Lertchirakarn V (2010) Stress distribution with different restorations in teeth with curved roots: a finite element analysis study. J Endod 36:115–118

    CrossRef  PubMed  Google Scholar 

  • Chen G, Fan W, Mishra S, El-Atem A, El-Atem A, Schuetz MA, Xiao Y (2012) Tooth fracture risk analysis based on a new finite element dental structure models using micro-CT data. Comput Biol Med 42:957–963

    CrossRef  PubMed  Google Scholar 

  • Coelho CS, Biffi JC, Silva GR, Abrahão A, Campos RE, Soares CJ (2009) Finite element analysis of weakened roots restored with composite resin and posts. Dent Mater J 28:671–678

    CrossRef  PubMed  Google Scholar 

  • Craig RG, Peyton FA (1958) Elastic and mechanical properties of human dentin. J Dent Res 37:710–718

    CrossRef  PubMed  Google Scholar 

  • De-Deus G, Silva EJ, Marins J, Souza E, Neves Ade A, Gonçalves Belladonna F, Alves H, Lopes RT, Versiani MA (2014) Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod 40:1447–1450

    CrossRef  PubMed  Google Scholar 

  • Driscoll CO, Dowker SE, Anderson P, Wilson RM, Gulabivala K (2002) Effects of sodium hypochlorite solution on root dentine composition. J Mater Sci Mater Med 13:219–223

    CrossRef  PubMed  Google Scholar 

  • Eltit F, Ebacher V, Wang R (2013) Inelastic deformation and microcracking process in human dentin. J Struct Biol 183:141–148

    CrossRef  PubMed  Google Scholar 

  • Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101–107

    CrossRef  PubMed  Google Scholar 

  • Estrela C, Guedes OA, Pereira-Júnior W, Esponda L, Cruz AG (2009) Diagnosis of endodontic failure. In: Endodontic science. Artes Médicas, São Paulo, pp 883–915

    Google Scholar 

  • Fuss Z, Lustig J, Katz A, Tamse A (2001) An evaluation of endodontically treated vertical root fractured teeth: impact of operative procedures. J Endod 27:46–48

    CrossRef  PubMed  Google Scholar 

  • Giannini M, Soares CJ, de Carvalho RM (2004) Ultimate tensile strength of tooth structures. Dent Mater 20:322–329

    CrossRef  PubMed  Google Scholar 

  • Grigoratos D, Knowles J, Ng YL, Gulabivala K (2001) Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J 34:113–119

    CrossRef  PubMed  Google Scholar 

  • Guedes OA, Chaves GS, Alencar AH, Borges AH, Estrela CR, Soares CJ, Estrela C (2014) Effect of gutta-percha solvents on fiberglass post bond strength to root canal dentin. J Oral Sci 56:105–112

    CrossRef  PubMed  Google Scholar 

  • Gutmann JL (1992) The dentin-root complex: anatomic and biologic considerations in restoring endodontically treated teeth. J Prosthet Dent 67:458–467

    CrossRef  PubMed  Google Scholar 

  • Gwinnett AJ (1992) Structure and composition of enamel. Oper Dent Suppl 5:10–17

    Google Scholar 

  • Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46:173–183

    CrossRef  PubMed  Google Scholar 

  • Harvey TE, White JT, Leeb IJ (1981) Lateral condensation stress in root canals. J Endod 7:151–155

    CrossRef  PubMed  Google Scholar 

  • Helfer AR, Melnick S, Schilder H (1972) Determination of the moisture content of vital and pulpless teeth. Oral Surg Oral Med Oral Pathol 34:661–670

    CrossRef  PubMed  Google Scholar 

  • Heulsmann M, Peters OA, Dummer PMH (2005) Mechanical preparation of root canals: shaping goals, techniques and means. Endod Topics 10:30–76

    CrossRef  Google Scholar 

  • Holcomb JQ, Pitts DL, Nicholls JI (1987) Further investigation of spreader loads required to cause vertical root fracture during lateral condensation. J Endod 13:277–284

    CrossRef  PubMed  Google Scholar 

  • Kim HC, Cheung GS, Lee CJ, Kim BM, Park JK, Kang SI (2008) Comparison of forces generated during root canal shaping and residual stresses of three nickel-titanium rotary files by using a three-dimensional finite-element analysis. J Endod 34:743–747

    CrossRef  PubMed  Google Scholar 

  • Kim HC, Kwak SW, Cheung GS, Ko DH, Chung SM, Lee W (2012) Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 38:541–544

    CrossRef  PubMed  Google Scholar 

  • Kim HC, Lee MH, Yum J, Versluis A, Lee CJ, Kim BM (2010) Potential relationship between design of nickel-titanium rotary instruments and vertical root fracture. J Endod 36:1195–1199

    CrossRef  PubMed  Google Scholar 

  • Kim HC, Sung SY, Ha JH, Solomonov M, Lee JM, Lee CJ, Kim BM (2013) Stress generation during self-adjusting file movement: minimally invasive instrumentation. J Endod 39:1572–1575

    CrossRef  PubMed  Google Scholar 

  • Kinney JH, Marshall SJ, Marshall GW (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14:13–29

    CrossRef  PubMed  Google Scholar 

  • Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO (2005) Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials 26:3363–3376

    CrossRef  PubMed  Google Scholar 

  • Lam PP, Palamara JE, Messer HH (2005) Fracture strength of tooth roots following canal preparation by hand and rotary instrumentation. J Endod 31:529–532

    CrossRef  PubMed  Google Scholar 

  • Lee BS, Hsieh TT, Chi DC, Lan WH, Lin CP (2004) The role of organic tissue on the punch shear strength of human dentin. J Dent 32:101–107

    CrossRef  PubMed  Google Scholar 

  • Lertchirakarn V, Palamara JE, Messer HH (2003) Patterns of vertical root fracture: factors affecting stress distribution in the root canal. J Endod 29:523–528

    CrossRef  PubMed  Google Scholar 

  • Lin CP, Douglas WH (1994) Structure–property relations and crack resistance at the bovine dentin-enamel junction. J Dent Res 73:1072–1078

    PubMed  Google Scholar 

  • Liu R, Hou BX, Wesselink PR, Wu MK, Shemesh H (2013) The incidence of root microcracks caused by 3 different single-file systems versus the ProTaper system. J Endod 39:1054–1056

    CrossRef  PubMed  Google Scholar 

  • Marshall GW Jr, Marshall SJ, Kinney JH, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25:441–458

    CrossRef  PubMed  Google Scholar 

  • Mjör IA (1972) Human coronal dentine: structure and reactions. Oral Surg Oral Med Oral Pathol 33:810–823

    CrossRef  PubMed  Google Scholar 

  • Nalla RK, Kinney JH, Ritchie RO (2003) Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials 24:3955–3968

    CrossRef  PubMed  Google Scholar 

  • O’Brien WJ (1987) Dental materials and their selection, 2nd edn. Quintessence Publishing Co., Chicago

    Google Scholar 

  • Perdigao J (2010) Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 26:E24–E37

    CrossRef  PubMed  Google Scholar 

  • Peters OA (2004) Current challenges and concepts in the preparation of root canal systems: a review. J Endod 30:559–567

    CrossRef  PubMed  Google Scholar 

  • Pitts DL, Matheny HE, Nicholls JI (1983) An in vitro study of spreader loads required to cause vertical root fracture during lateral condensation. J Endod 9:544–550

    CrossRef  PubMed  Google Scholar 

  • Ratih DN, Palamara JE, Messer HH (2007) Temperature change, dentinal fluid flow and cuspal displacement during resin composite restoration. J Oral Rehabil 34:693–701

    CrossRef  PubMed  Google Scholar 

  • Reeh ES, Messer HH, Douglas WH (1989) Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod 15:512–516

    CrossRef  PubMed  Google Scholar 

  • Renovato SR, Santana FR, Ferreira JM, Souza JB, Soares CJ, Estrela C (2013) Effect of calcium hydroxide and endodontic irrigants on fibre post bond strength to root canal dentine. Int Endod J 46:738–746

    CrossRef  PubMed  Google Scholar 

  • Rundquist BD, Versluis A (2006) How does canal taper affect root stresses? Int Endod J 39:226–237

    CrossRef  PubMed  Google Scholar 

  • Saleh AA, Ettman WM (1999) Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent 27:43–46

    CrossRef  PubMed  Google Scholar 

  • Salehrabi R, Rotstein I (2004) Endodontic treatment outcomes in a large patient population in the USA: an epidemiological study. J Endod 30:846–850

    CrossRef  PubMed  Google Scholar 

  • Santos-Filho PC, Verissimo C, Raposo LH, Noritomi PY, Marcondes Martins LR (2014) Influence of ferrule, post system, and length on stress distribution of weakened root-filled teeth. J Endod 40:1874–1878

    CrossRef  PubMed  Google Scholar 

  • Sathorn C, Palamara JE, Messer HH (2005) A comparison of the effects of two canal preparation techniques on root fracture susceptibility and fracture pattern. J Endod 31:283–287

    CrossRef  PubMed  Google Scholar 

  • Sauk JJ, Norris K, Foster R, Moehring J, Somerman MJ (1988) Expression of heat stress proteins by human periodontal ligament cells. J Oral Pathol 17:496–499

    CrossRef  PubMed  Google Scholar 

  • Saunders EM, Saunders WP (1989) The heat generated on the external root surface during post space preparation. Int Endod J 22:169–173

    CrossRef  PubMed  Google Scholar 

  • Schafer E, Lau R (1999) Comparison of cutting efficiency and instrumentation of curved canals with nickel-titanium and stainless-steel instruments. J Endod 25:427–430

    CrossRef  PubMed  Google Scholar 

  • Schafer E, Schulz-Bongert U, Tulus G (2004) Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod 30:432–435

    CrossRef  PubMed  Google Scholar 

  • Schmidt KJ, Walker TL, Johnson JD, Nicoll BK (2000) Comparison of nickel-titanium and stainless-steel spreader penetration and accessory cone fit in curved canals. J Endod 26:42–44

    CrossRef  PubMed  Google Scholar 

  • Shemesh H, Roeleveld AC, Wesselink PR, Wu MK (2011) Damage to root dentin during retreatment procedures. J Endod 37:63–66

    CrossRef  PubMed  Google Scholar 

  • Shin CS, Huang YH, Chi CW, Lin CP (2014) Fatigue life enhancement of NiTi rotary endodontic instruments by progressive reciprocating operation. Int Endod J 47:882–888

    CrossRef  PubMed  Google Scholar 

  • Silva GR, Santos-Filho PC, Simamoto-Junior PC, Martins LR, Mota AS, Soares CJ (2011) Effect of post type and restorative techniques on the strain and fracture resistance of flared incisor roots. Braz Dent J 22:230–237

    CrossRef  PubMed  Google Scholar 

  • Soares CJ, Castro CG, Neiva NA, Soares PV, Santos-Filho PC, Naves LZ, Pereira PN (2010) Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res 89:159–164

    CrossRef  PubMed  Google Scholar 

  • Soares CJ, Santana FR, Silva NR, Pereira JC, Pereira CA (2007) Influence of the endodontic treatment on mechanical properties of root dentin. J Endod 33:603–606

    CrossRef  PubMed  Google Scholar 

  • Soares CJ, Soares PV, de Freitas Santos-Filho PC, Castro CG, Magalhaes D, Versluis A (2008) The influence of cavity design and glass fiber posts on biomechanical behavior of endodontically treated premolars. J Endod 34:1015–1019

    CrossRef  PubMed  Google Scholar 

  • Stanford JW, Weigel KV, Paffenbarger GC, Sweeney WT (1960) Compressive properties of hard tooth tissues and some restorative materials. J Am Dent Assoc 60:746–756

    CrossRef  PubMed  Google Scholar 

  • Tamse A, Fuss Z, Lustig J, Kaplavi J (1999) An evaluation of endodontically treated vertically fractured teeth. J Endod 25:506–508

    CrossRef  PubMed  Google Scholar 

  • Tamse A (2006) Vertical root fractures in endodontically treated teeth: diagnostic signs and clinical management. Endod Topics 13:84–94

    CrossRef  Google Scholar 

  • Tang W, Wu Y, Smales RJ (2010) Identifying and reducing risks for potential fractures in endodontically treated teeth. J Endod 36:609–617

    CrossRef  PubMed  Google Scholar 

  • Tidmarsh BG (1976) Restoration of endodontically treated posterior teeth. J Endod 2:374–375

    CrossRef  PubMed  Google Scholar 

  • Tronstad L (1973) Ultrastructural observations on human coronal dentin. Scand J Dent Res 81:101–111

    PubMed  Google Scholar 

  • Tsesis I, Rosen E, Tamse A, Taschieri S, Kfir A (2010) Diagnosis of vertical root fractures in endodontically treated teeth based on clinical and radiographic indices: a systematic review. J Endod 36:1455–1458

    CrossRef  PubMed  Google Scholar 

  • Urabe I, Nakajima S, Sano H, Tagami J (2000) Physical properties of the dentin-enamel junction region. Am J Dent 13:129–135

    PubMed  Google Scholar 

  • Vasiliadis L, Darling AI, Levers BGH (1983) The amount and distribution of sclerotic human root dentin. Arch Oral Biol 28:645–649

    CrossRef  PubMed  Google Scholar 

  • Versluis A, Messer HH, Pintado MR (2006) Changes in compaction stress distributions in roots resulting from canal preparation. Int Endod J 39:931–939

    CrossRef  PubMed  Google Scholar 

  • Versluis A, Versluis-Tantbirojn D (2011) Filling cavities or restoring teeth? J Tenn Dent Assoc 91:36–42, quiz 42–33

    PubMed  Google Scholar 

  • Vire DE (1991) Failure of endodontically treated teeth: classification and evaluation. J Endod 17:338–342

    CrossRef  PubMed  Google Scholar 

  • Wilcox LR, Roskelley C, Sutton T (1997) The relationship of root canal enlargement to finger-spreader induced vertical root fracture. J Endod 23:533–534

    CrossRef  PubMed  Google Scholar 

  • Yared G (2008) Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 41:339–344

    CrossRef  PubMed  Google Scholar 

  • Yoldas O, Yilmaz S, Atakan G, Kuden C, Kasan Z (2012) Dentinal microcrack formation during root canal preparations by different NiTi rotary instruments and the self-adjusting file. J Endod 38:232–235

    CrossRef  PubMed  Google Scholar 

  • Zhi-Yue L, Yu-Xing Z (2003) Effects of post-core design and ferrule on fracture resistance of endodontically treated maxillary central incisors. J Prosthet Dent 89:368–373

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos José Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soares, C.J., Versluis, A., Tantbirojn, D., Kim, HC., Veríssimo, C. (2016). Effect of Endodontic Treatment Procedures on Canal Shape and Mechanical Properties of a Tooth. In: Perdigão, J. (eds) Restoration of Root Canal-Treated Teeth. Springer, Cham. https://doi.org/10.1007/978-3-319-15401-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15401-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15400-8

  • Online ISBN: 978-3-319-15401-5

  • eBook Packages: MedicineMedicine (R0)