Skip to main content

The Covariant Evolution Operator and the Green’s-Operator Method

  • Chapter
  • First Online:
  • 1179 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 63))

Abstract

The third method we shall consider for numerical QED calculations on bound states is the Covariant-Evolution operator (CEO), developed during the last decade by the Gothenburg group (Lindgren et al., Phys. Rep. 389, 161–261, 2004) [130], (Lindgren et al., Can. J. Phys. 83, 183–218, 2005) [131], (Lindgren et al., Phys. Rev. A 73, 062–502, 2006) [132]. This procedure is based upon the non-relativistic time-evolution operator, discussed in Chap. 3, but made relativistically covariant in order to be applicable in relativistic calculations. This method has the advantage over the two methods discussed previously, the S-matrix procedure and the Green’s-function procedure, that it can be used perturbatively, and the perturbations can be included in the wave function—not only added to the energy. It then forms a convenient basis for a covariant relativistic many-body perturbation procedure, where electron correlation and quantum electrodynamics are systematically combined. For two-electron systems this is fully compatible with the Bethe–Salpeter equation. This question will be the main topic for the rest of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See footnote in the Introduction.

  2. 2.

    An “n-body operator” is an operator with n pairs of creation/absorption operators (for particles), while an “m-particle” function or operator is an object of m particles outside our vacuum. In principle, n can take any value \(n\le m\), although we shall normally assume that \(n=m\).

  3. 3.

    It should be observed that a Goldstone diagram is generally distinct from a “time-ordered Feynman diagram”, as is further analyzed in Appendix I.

  4. 4.

    In the covariant formalism we need a time dependence also on the zeroth-order component (see 6.96), in contrast to the standard evolution operator (3.21).

  5. 5.

    As pointed out before, the numerator and denominator might here be separately singular in the limit, and only the ratio is regular.

  6. 6.

    Also the Fock space is a form of Hilbert space, and therefore we shall refer to the Hilbert space with a constant number of photons as the restricted (Hilbert) space and the space with a variable number of photons as the (extended) photonic Fock space (see Appendix A.2).

  7. 7.

    This equation is not completely covariant, because it has a single time, in accordance with the established quantum-mechanical picture. This is the equal-time approximation, mentioned above and further discussed later. In addition, a complete covariant treatment would require that also the interaction between the electrons and the nucleus is treated in a covariant way by means of the exchange of virtual photons (see, for instance, [227]).

  8. 8.

    In the following we shall leave out the subscript “Rel”.

  9. 9.

    The Green’s operator is closely related—but not quite identical—to the reduced covariant evolution operator, previously introduced by the Gothenburg group [130].

  10. 10.

    Compare footnote in Sect. 6.4.

  11. 11.

    We use the convention that the subscript denotes the number of model-space states (“folds”), intermediate or final, and the superscript in brackets the order of perturbation.

  12. 12.

    \(\mathcal {G}^{(0)}(t,{\mathcal {E}})={\mathrm {e}}^{-\mathrm {i}t({\mathcal {E}}-H_0)}\) and \(\mathcal {G}_0(t,{\mathcal {E}})P_{\mathcal {E}}=\mathcal {G}^{(0)}(t,{\mathcal {E}})\,U_0(0,{\mathcal {E}})P_{\mathcal {E}}=\mathcal {G}^{(0)}(t,{\mathcal {E}})\big ((1+QU_0(0,{\mathcal {E}}))\big )P_{\mathcal {E}}\), which gives \(P_{{\mathcal {E}}'}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\mathcal {G}^{(0)}(t,{\mathcal {E}})\Big )_{t=0}P_{\mathcal {E}}=P_{{\mathcal {E}}'}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\mathcal {G}_0(t,{\mathcal {E}})\Big )_{t=0}P_{\mathcal {E}}=0\) and \(P_{{\mathcal {E}}'}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\frac{\delta \mathcal {G}^{(0)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}=P_{{\mathcal {E}}'}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\frac{\delta \mathcal {G}_0}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}=P_{{\mathcal {E}}'}P_{\mathcal {E}}\).

  13. 13.

    From the previous footnote we have \(P_{{\mathcal {E}}''}\mathrm {i}\frac{\partial }{\partial t}\Big (\frac{\delta \mathcal {G}^{(1)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{{\mathcal {E}}'}W^{(1)}P_{\mathcal {E}}=P_{{\mathcal {E}}''}\mathrm {i}\frac{\partial }{\partial t}\Big (\frac{\delta \mathcal {G}_0^{(1)}(t,{\mathcal {E}}')}{\delta {\mathcal {E}}}+ \frac{\delta ^{2} \mathcal {G}^{(0)}(t,{\mathcal {E}}')}{\delta {\mathcal {E}}^{2}}\,W^{(1)}+\frac{\delta \mathcal {G}^{(0)}(t,{\mathcal {E}}')}{\delta {\mathcal {E}}}\frac{\delta W^{(1)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{{\mathcal {E}}'}W^{(1)}P_{\mathcal {E}}=P_{{\mathcal {E}}''}P_{{\mathcal {E}}'}W^{(1)}P_{\mathcal {E}}+P_{{\mathcal {E}}''}\frac{\delta W^{(1)}}{\delta {\mathcal {E}}}W^{(1)}P_{\mathcal {E}}\).

  14. 14.

    The rules for differentiating are as follows

    $$\begin{aligned} \frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}&=\frac{\mathcal {G}_{\mathcal {E}}-\mathcal {G}_{{\mathcal {E}}'}}{{\mathcal {E}}-{\mathcal {E}}'};\quad \frac{\delta }{\delta {\mathcal {E}}}\Big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}V\Big ) =\frac{\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{\mathcal {E}}V_{\mathcal {E}}-\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{{\mathcal {E}}'}V_{{\mathcal {E}}'}}{{\mathcal {E}}-{\mathcal {E}}'}\nonumber \\&=\frac{\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{\mathcal {E}}V_{\mathcal {E}}-\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{{\mathcal {E}}'}V_{{\mathcal {E}}} +\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{{\mathcal {E}}'}V_{{\mathcal {E}}}-\big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\big )_{{\mathcal {E}}'} V_{{\mathcal {E}}'}}{{\mathcal {E}}-{\mathcal {E}}'} =\frac{\delta ^{2} \mathcal {G}}{\delta {\mathcal {E}}^{2}}\,V+\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\frac{\delta V}{\delta {\mathcal {E}}}\nonumber \\\frac{\delta }{\delta {\mathcal {E}}}\;V^2&=\frac{\delta }{\delta {\mathcal {E}}}V_{{\mathcal {E}}''}V_{\mathcal {E}}=V_{{\mathcal {E}}''} \frac{V_{\mathcal {E}}-V_{{\mathcal {E}}'}}{{\mathcal {E}}-{\mathcal {E}}'} =V\frac{\delta V}{\delta {\mathcal {E}}}.\nonumber \\\end{aligned}$$

    This can be generalized to

    $$\begin{aligned} \frac{\delta ^{n} (AB)}{\delta {\mathcal {E}}^{n}}=\sum _{m=0}^n\frac{\delta ^{m} A}{\delta {\mathcal {E}}^{m}}\,\frac{\delta ^{n-m} B}{\delta {\mathcal {E}}^{n-m}} \end{aligned}$$

    (see further [132, Appendix B]).

  15. 15.

    \(\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}=\frac{\delta \mathcal {G}^{(0)}}{\delta {\mathcal {E}}}+\frac{\delta \mathcal {G}^{(1)}}{\delta {\mathcal {E}}}+\cdots \); \( P_{\mathcal {E}}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\mathcal {G}_0(t,{\mathcal {E}})\Big )_{t=0}P_{\mathcal {E}}=0\); \(P_{\mathcal {E}}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\frac{\delta \mathcal {G}^{(0)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}=1\); \(P_{\mathcal {E}}\Big (\mathrm {i}\frac{\partial }{\partial t}\,\frac{\delta \mathcal {G}^{(1)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}=P_{\mathcal {E}}\mathrm {i}\frac{\partial }{\partial t}\,\frac{\delta }{\delta {\mathcal {E}}}\Big (\frac{\delta \mathcal {G}^{(0)}}{\delta {\mathcal {E}}}W^{(1)}\Big )_{t=0}P_{\mathcal {E}}=\frac{\delta W^{(1)}}{\delta {\mathcal {E}}}\);

    \(P_{\mathcal {E}}\mathrm {i}\frac{\partial }{\partial t}\,\Big (\frac{\delta \mathcal {G}^{(2)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}=\) \(P_{\mathcal {E}}\mathrm {i}\frac{\partial }{\partial t}\,\Big (\frac{\delta \mathcal {G}^{(0)}}{\delta {\mathcal {E}}}\frac{\delta W_0^{(2)}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}\)

    \(+P_{\mathcal {E}}\mathrm {i}\frac{\partial }{\partial t}\,\Big (\frac{\delta ^{2} \mathcal {G}^{(1)}}{\delta {\mathcal {E}}^{2}}W^{(1)}+ \frac{\delta \mathcal {G}^{(1)}}{\delta {\mathcal {E}}}\frac{\delta W^{(1)}}{\delta {\mathcal {E}}} \Big )_{t=0}P_{\mathcal {E}}= \frac{\delta W_0^{(2)}}{\delta {\mathcal {E}}}+\frac{\delta ^{2} W^{(1)}}{\delta {\mathcal {E}}^{2}}W^{(1)}+\frac{\delta W^{(1)}}{\delta {\mathcal {E}}}^2\)

    \(=\frac{\delta W_0^{(2)}}{\delta {\mathcal {E}}}+\frac{\delta W_1^{(2)}}{\delta {\mathcal {E}}}=\frac{\delta W^{(2)}}{\delta {\mathcal {E}}}\Rightarrow P_{\mathcal {E}}\mathrm {i}\frac{\partial }{\partial t}\,\Big (\frac{\delta \mathcal {G}}{\delta {\mathcal {E}}}\Big )_{t=0}P_{\mathcal {E}}= 1+\frac{\delta W^{(1)}}{\delta {\mathcal {E}}}+\frac{\delta W^{(2)}}{\delta {\mathcal {E}}}+\cdots =1+\frac{\delta W}{\delta {\mathcal {E}}}.\)

  16. 16.

    Distinguishing the various interactions, we can write

    figure b
  17. 17.

    It should be noted that an irreducible multi-photon potential is here regarded as a single interaction.

  18. 18.
    figure c
  19. 19.
    figure d

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingvar Lindgren .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lindgren, I. (2016). The Covariant Evolution Operator and the Green’s-Operator Method. In: Relativistic Many-Body Theory. Springer Series on Atomic, Optical, and Plasma Physics, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-15386-5_6

Download citation

Publish with us

Policies and ethics