Skip to main content

Nanomedicine: Implications from Nanotoxicity

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 658 Accesses

Abstract

Feynman’s 1959 vision of a “smaller world” is now actively being realized through advances in nanotechnology and nanoscience [1]. Particularly over the past decade, nanotechnology has emerged as a nexus of physical and medical scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  2. National Science and Technology Council (2012) The national nanotechnology initiative—supplement to the president’s 2013 budget

    Google Scholar 

  3. National Institutes of Health Roadmap for Medical Research (2013) Nanomedicine http://commonfund.nih.gov/Nanomedicine/. Accessed 14 Oct 2013

  4. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038

    Article  Google Scholar 

  5. Mendes RG, Bachmatiuk A, Buchner B, Cuniberti G, Rummeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1(4):401–428

    Article  Google Scholar 

  6. Kang SG, Zhou G, Yang P, Liu Y, Sun B et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by gd@c82(oh)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci U.S.A. 109(38):15431–15436

    Article  Google Scholar 

  7. Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601

    Article  Google Scholar 

  8. Li H, Li Y, Jiao J, Hu HM (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6(10):645–650

    Article  Google Scholar 

  9. Zhang Y, Zheng F, Yang T, Zhou W, Liu Y et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11(9):817–826

    Article  Google Scholar 

  10. Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911

    Article  Google Scholar 

  11. Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874

    Article  Google Scholar 

  12. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of aids-related kaposi’s sarcoma: Results of a randomized phase iii clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 16(7):2445–2451

    Google Scholar 

  13. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol Off J Eur Soc Med Oncol/ESMO 11(8):1029–1033

    Article  Google Scholar 

  14. Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    Article  Google Scholar 

  15. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521–535

    Article  Google Scholar 

  16. Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Accounts Chem Res 44(10):999–1008

    Article  Google Scholar 

  17. Lee PY, Wong KKY (2011) Nanomedicine: a new frontier in cancer therapeutics. Curr Drug Deliv 8(3):245–253

    Article  MathSciNet  Google Scholar 

  18. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  Google Scholar 

  19. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    Google Scholar 

  20. Maeda H, Matsumura Y (2011) Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev 63(3):129–130

    Article  Google Scholar 

  21. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  Google Scholar 

  22. Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW et al (2005) 131i-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352(5):441–449

    Article  Google Scholar 

  23. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  Google Scholar 

  24. Jain RK, Lee JJ, Hong D, Markman M, Gong J et al (2010) Phase i oncology studies: Evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res Off J Am Assoc Cancer Res 16(4):1289–1297

    Article  Google Scholar 

  25. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897

    Article  Google Scholar 

  26. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z et al (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649

    Google Scholar 

  27. Anilkumar P, Lu F, Cao L, Luo PG, Liu JH et al (2011) Fullerenes for applications in biology and medicine. Curr Med Chem 18(14):2045–2059

    Article  Google Scholar 

  28. Chawla P, Chawla V, Maheshwari R, Saraf SA, Saraf SK (2010) Fullerenes: from carbon to nanomedicine. Mini-Rev Med Chem 10(8):662–677

    Article  Google Scholar 

  29. Cai X, Jia H, Liu Z, Hou B, Luo C et al (2008) Polyhydroxylated fullerene derivative c(60)(oh)(24) prevents mitochondrial dysfunction and oxidative damage in an mpp(+)-induced cellular model of parkinson’s disease. J Neurosci Res 86(16):3622–3634

    Article  Google Scholar 

  30. Bogdanovic V, Stankov K, Icevic I, Zikic D, Nikolic A et al (2008) Fullerenol c60(oh)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J Radiat Res 49(3):321–327

    Article  Google Scholar 

  31. Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW et al (2006) Fullerene (c60) immunoconjugates: interaction of water-soluble c60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun (Camb) 28:3004–3006

    Article  Google Scholar 

  32. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760

    Article  Google Scholar 

  33. Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T et al (2003) Lanthanoid endohedral metallofullerenols for mri contrast agents. J Am Chem Soc 125(14):4391–4397

    Article  Google Scholar 

  34. Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for mri contrast agents. Bioconjug Chem 12(4):510–514

    Article  Google Scholar 

  35. Chen C, Xing G, Wang J, Zhao Y, Li B et al (2005) Multihydroxylated [gd@c82(oh)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057

    Article  Google Scholar 

  36. Meng H, Xing G, Blanco E, Song Y, Zhao L et al (2012) Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine 8(2):136–146

    Article  Google Scholar 

  37. Yin JJ, Lao F, Meng J, Fu PP, Zhao Y et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74(4):1132–1140

    Article  Google Scholar 

  38. Meng H, Xing G, Sun B, Zhao F, Lei H et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4(5):2773–2783

    Article  Google Scholar 

  39. Yang D, Zhao Y, Guo H, Li Y, Tewary P et al (2010) [gd@c82(oh)22]n nanoparticles induce dendritic cell maturation and activate th1 immune responses. ACS Nano 4(2):1178–1186

    Article  Google Scholar 

  40. Zuo G, Huang Q, Wei G, Zhou R, Fang H (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514

    Article  Google Scholar 

  41. Ge C, Du J, Zhao L, Wang L, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U.S.A. 108(41):16968–16973

    Article  Google Scholar 

  42. Zuo G, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: Effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328

    Article  Google Scholar 

  43. Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803(1):72–94

    Google Scholar 

  44. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192

    Article  Google Scholar 

  45. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  46. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3(6):363–368

    Article  Google Scholar 

  47. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of c60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619

    Article  Google Scholar 

  48. Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719

    Article  Google Scholar 

  49. Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8(9):2751–2756

    Article  Google Scholar 

  50. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186

    Article  Google Scholar 

  51. Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583

    Article  Google Scholar 

  52. Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395

    Article  Google Scholar 

  53. Hu W, Peng C, Luo W, Lv M, Li X et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Article  Google Scholar 

  54. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  Google Scholar 

  55. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  Google Scholar 

  56. Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287

    Article  Google Scholar 

  57. Hu W, Peng C, Lv M, Li X, Zhang Y et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  Google Scholar 

  58. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  Google Scholar 

  59. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  Google Scholar 

  60. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  Google Scholar 

  61. Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the ph-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1):235–241

    Article  Google Scholar 

  62. Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 4(4):2300–2306

    Article  Google Scholar 

  63. Zhao J, Deng B, Lv M, Li J, Zhang Y et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2013 (in press)

    Google Scholar 

  64. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  Google Scholar 

  65. Wei C, Lin WY, Zainal Z, Williams NE, Zhu K et al (1994) Bactericidal activity of tio2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938

    Article  Google Scholar 

  66. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125

    Article  Google Scholar 

  67. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221

    Article  Google Scholar 

  68. Yu L, Lu Y, Man N, Yu SH, Wen LP (2009) Rare earth oxide nanocrystals induce autophagy in hela cells. Small 5(24):2784–2787

    Article  Google Scholar 

  69. Zhang Q, Yang W, Man N, Zheng F, Shen Y et al (2009) Autophagy-mediated chemosensitization in cancer cells by fullerene c60 nanocrystal. Autophagy 5(8):1107–1117

    Article  Google Scholar 

  70. Zhang Y, Yu C, Huang G, Wang C, Wen L (2010) Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomed 5:601–609

    Article  Google Scholar 

  71. Wu YN, Yang LX, Shi XY, Li IC, Biazik JM et al (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20):4565–4573

    Article  Google Scholar 

  72. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R et al (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970

    Article  Google Scholar 

  73. Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annual Rev Pathol 3:427–455

    Article  Google Scholar 

  74. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  Google Scholar 

  75. Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3(3):278–281

    Article  Google Scholar 

  76. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64

    Article  Google Scholar 

  77. Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95

    Article  Google Scholar 

  78. Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8(8):607–618

    Article  Google Scholar 

  79. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5(7):505–517

    Article  Google Scholar 

  80. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293

    Article  Google Scholar 

  81. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107

    Google Scholar 

  82. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545

    Article  Google Scholar 

  83. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495

    Article  Google Scholar 

  84. Chen JY, Lee YM, Zhao D, Mak NK, Wong RN et al (2010) Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol 86(2):431–437

    Article  Google Scholar 

  85. Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP et al (2010) Cdte quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett 5(4):753–760

    Article  Google Scholar 

  86. Choi HS, Liu W, Liu F, Nasr K, Misra P et al (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47

    Article  Google Scholar 

  87. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404

    Article  Google Scholar 

  88. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  Google Scholar 

  89. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693

    Article  Google Scholar 

  90. Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6):4319–4328

    Article  Google Scholar 

  91. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66

    Article  Google Scholar 

  92. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851

    Article  Google Scholar 

  93. Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J et al (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864

    Article  Google Scholar 

  94. Yang K, Zhang S, Zhang G, Sun X, Lee ST et al (2010) Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  Google Scholar 

  95. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831

    Article  Google Scholar 

  96. Huang X, Tang S, Mu X, Dai Y, Chen G et al (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6(1):28–32

    Article  Google Scholar 

  97. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B et al (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11(6):2560–2566

    Article  Google Scholar 

  98. Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    Article  Google Scholar 

  99. Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  Google Scholar 

  100. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  Google Scholar 

  101. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  Google Scholar 

  102. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50

    Article  Google Scholar 

  103. Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65(1):80–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Nanomedicine: Implications from Nanotoxicity. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics