Skip to main content

Graphyne and Derivatives

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 632 Accesses

Abstract

Like graphene, graphyne is a carbon-based, molecular-sheet nanomaterial comprised a single layer of atoms. While graphyne and graphene share analogous planar structures, graphyne is distinguished by its intermittent sp 1- and sp 2-hybridized carbon atoms and an accompanying network of double and triple bonds that enrich it with unique and potentially useful properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminster-fullerene. Nature 318:162–163

    Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Wu J, Walukiewicz W, Shan W, Bourret-Courchesne E, Ager J III, Yu K, Haller E, Kissell K, Bachilo SM, Weisman RB, Smalley RE (2004) Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes. Phys Rev Lett 93:017404

    Article  Google Scholar 

  4. Novoselov KS; Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grig-orieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  5. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  Google Scholar 

  6. Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  Google Scholar 

  7. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  8. Latil S, Henrard L (2006) Charge carriers in few-layer graphene films. Phys Rev Lett 97:036803

    Article  Google Scholar 

  9. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699

    Article  Google Scholar 

  10. Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed 36:836–838

    Article  Google Scholar 

  11. Li GX, Li YL, Liu HB, Guo Y, Li Y, Zhu D (2010) Architecture of graphyne nanoscale films. Chem Commun 46:3256–3258

    Article  Google Scholar 

  12. Narita N, Nagai S, Suzuki S, Nakao K (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:11009

    Article  Google Scholar 

  13. Kang J, Li J, Wu F, Li S-S, Xia J-B (2011) Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C 115:20466–20470

    Article  Google Scholar 

  14. Zhong J, Wang J, Zhou J-G, Mao B-H, Liu C-H, Liu, H-B, Li Y-L, Sham T-K, Sun X-H, Wang S-D (2013) Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J Phys Chem C 117:5931–5936

    Google Scholar 

  15. Yang Y, Xu X (2012) Mechanical properties of graphyne and its family—a molecular dynamics investigation. Comput Mater Sci 61:83–88

    Article  Google Scholar 

  16. Lusk MT, Carr LD (2009) Nanoengineering carbon allotropes from graphene. Carbon 47:2226–2232

    Article  Google Scholar 

  17. Cranford SW, Buehler MJ (2011) Mechanical properties of graphyne. Carbon 49:4111–4121

    Article  Google Scholar 

  18. Zhang YY, Pei QX, Wang CM (2012) Mechanical properties of graphynes under tension: a molecular dynamics study. Appl Phys Lett 101:081909

    Article  Google Scholar 

  19. Ajori S, Ansari R, Mirnezhad M (2013) Mechanical properties of defective γ-graphyne using molecular dynamics simulations. Mater Sci Eng A 561:34–39

    Article  Google Scholar 

  20. Ouyang T, Chen Y, Liu L-M, Xie Y, Wei X, Zhong J (2012) Thermal transport in graphyne nanoribbons. Phys Rev B 85:235436

    Article  Google Scholar 

  21. Wang X-M, Mo D-C, Lu S-S (2013) On the thermoelectric transport properties of graphyne by the first-principles method. J Chem Phys 138:204704

    Article  Google Scholar 

  22. Chen J, Xi J, Wang D, Shuai Z (2013) Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction. J Phys Chem Lett 4:1443–1448

    Article  Google Scholar 

  23. Malko D, Neiss C, Viñes F, Görling A (2012) Competition for graphene: graphynes with direction-dependent dirac cones. Phys Rev Lett 108:086804

    Article  Google Scholar 

  24. Popov VN, Lambin P (2013) Theoretical Raman fingerprints of α-, β -, and γ-graphyne. Phys Rev B 88:075427

    Article  Google Scholar 

  25. Lu H, Li S-D (2013) Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C 1:3677–3680

    Article  Google Scholar 

  26. Özcelik VO, Ciraci S (2013) Size dependence in the stabilities and electronic properties of α-graphyne and its boron nitride analogue. J Phys Chem C 117:2175–2182

    Google Scholar 

  27. Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K (2005) Electronic structures and band gaps of chains and sheets based on phenylacetylene units. Chem Phys 312:289–297

    Article  Google Scholar 

  28. Zhou J, Lv K, Wang Q, Chen XS, Sun Q, Jena P (2011) Electronic structures and bonding of graphyne sheet and its BN analog. J Chem Phys 134:174701

    Article  Google Scholar 

  29. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectron- ics and energy storage applications. J Phys Chem C 116:5951–5956

    Article  Google Scholar 

  30. Guo Y, Lan X, Cao J, Xu B, Xia Y, Yin J, Liu Z (2013) A comparative study of the reversible hydrogen storage behavior in several metal decorated graphyne. Int J Hydrogen Energy 38:3987–3993

    Article  Google Scholar 

  31. Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X (2011) High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J Phys Chem C 115:8845–8850

    Article  Google Scholar 

  32. Chandra ShekarS, Swathi RS (2013) Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J Phys Chem A 117:8632–8641

    Google Scholar 

  33. Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24:505720

    Article  Google Scholar 

  34. Soodchomshom B, Tang I-M, Hoonsawat R (2013) Directional quantum transport in graphyne pn junction. J Appl Phys 113:073710

    Article  Google Scholar 

  35. Furukawa S, Uji-i H, Tahara K, Ichikawa T, Sonoda M, De Schryver FC, Tobe Y, De Feyter S (2006) Molecular geometry directed Kagome and honeycomb networks: toward two-dimensional crystal engineering. J Am Chem Soc 128:3502–3503

    Article  Google Scholar 

  36. Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47:11843–11845

    Article  Google Scholar 

  37. Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601

    Article  Google Scholar 

  38. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300

    Article  Google Scholar 

  39. Lanphere JD, Rogers B, Luth C, Bolster CH, Walker SL (2014) Stability and transport of graphene oxide nanoparticles in groundwater and surface water. Environ Eng Sci 31:350–359

    Article  Google Scholar 

  40. Luan B, Huynh T, Zhao L, Zhou R (2015) Potential toxicity of graphene to cell functions via disrupting protein–protein interactions. ACS Nano 9:663–669

    Article  Google Scholar 

  41. Eijkelenboom AP, Lutzke RAP, Boelens R, Plasterk RH, Kaptein R, Hård K (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Mol Bio 2:807–810

    Article  Google Scholar 

  42. Eijkelenboom AP, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RH, Boe-lens R, Kaptein R (1999) Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins Struct Funct Bioinfo 36:556–564

    Google Scholar 

  43. Phillips JC et al (2005) J Comp Chem 26:1781

    Google Scholar 

  44. Eleftheriou M, Germain RS, Royyuru AK, Zhou R (2006) Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields. 128:13388–13395

    Google Scholar 

  45. Liu P, Huang X, Zhou R, Berne B (2005) Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437:159–162

    Article  Google Scholar 

  46. Zhou R (2003) Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci USA 100:13280–13285

    Article  Google Scholar 

  47. Zhou R, Huang X, Margulis C, Berne B (2004) Hydrophobic collapse in multidomain protein folding. Science 305:1605

    Article  Google Scholar 

  48. MacKerell A Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  49. Beglov D, Roux B (1994) Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J Chem Phys 100:9050–9063

    Article  Google Scholar 

  50. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  Google Scholar 

  51. Neria E, Fischer S, Karplus M (1902) Simulation of activation free energies in molecular systems. J Chem Phys 1996:105

    Google Scholar 

  52. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  Google Scholar 

  53. Zuo G, Huang Q, Wei G, Zhou R, Fang H (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4:7508–7514

    Article  Google Scholar 

  54. Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity. J Chem Phys C 115:23323–23328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Graphyne and Derivatives. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics