Skip to main content

Graphene and Derivatives

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 635 Accesses

Abstract

As mentioned in the previous two chapters, the increased use of nanomaterials in biomedicine has also created keen interest in exploring their interactions with tissues, cells, and biomolecules [1]. A detailed understanding of how nanomaterials interact with biomolecules at the molecular level is essential to the safe usage of nanoparticle-based biomedical technologies [28]. Recently, the interactions between proteins, nucleic acids (such as DNA), and cell membranes with nanomaterials (particularly, graphitic nanomaterials) have been studied extensively using experiments and simulations, and they have been shown to affect both the structure and function of biological systems, resulting in serious cytotoxicity and biosafety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  2. Service, R. F. (2000) Is nanotechnology dangerous? Science 290:1526–1527

    Article  Google Scholar 

  3. Donaldson K, Aitken R, Tran L, Stone V, Duffin R et al (2006) Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  Google Scholar 

  4. Gilbert N (2009) Nanoparticle safety in doubt. Nature 460:937

    Article  Google Scholar 

  5. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  6. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: Are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192

    Article  Google Scholar 

  7. Chen Z, Meng H, Xing GM, Chen CY, Zhao YL et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  Google Scholar 

  8. Zhang YB, Ali SF, Dervishi E, Xu Y, Li ZR et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural pheochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186

    Article  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065):197–200

    Article  Google Scholar 

  10. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065):201–204

    Article  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  12. Liu Z, Robinson JT, Sun X, Dai H (2008) Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  Google Scholar 

  13. Feng L, Liu Z (2011) Graphene in biomedicine: Opportunities and challenges. Nanomedicine 6(2):317–324

    Article  Google Scholar 

  14. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  Google Scholar 

  15. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  Google Scholar 

  16. Yang X, Wang Y, Huang X, Ma Y, Huang Y et al (2011) Multi-functionalized graphene oxide based anticancer drug carrier with dual-targeting function and ph-sensitivity. J Mater Chem 21:3448–3454

    Article  Google Scholar 

  17. Titov AV, Kral P, Pearson R (2010) Sandwiched graphene-membrane superstructures. ACS Nano 4:229–234

    Article  Google Scholar 

  18. Guo R, Mao J, Yan LT (2013) Computer simulation of cell entry of graphene nanosheet. Biomaterials 34:4296–4301

    Article  Google Scholar 

  19. Wang JL, Wei YJ, Shi XH, Gao HJ (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidization and surface adsorption. RSC Adv 3:15776–15782

    Article  Google Scholar 

  20. Okada F (2007) Beyond foreign-body-induced carcinogenesis: Impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 121(11):2364–2372

    Article  Google Scholar 

  21. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  Google Scholar 

  22. Yang K, Zhang S, Zhang G, Sun X, Lee S-T et al (2010) Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  Google Scholar 

  23. Hu W, Peng C, Luo W, Lv M, Li X et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Article  Google Scholar 

  24. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  Google Scholar 

  25. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  Google Scholar 

  26. Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287

    Article  Google Scholar 

  27. Hu W, Peng C, Lv M, Li X, Zhang Y et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  Google Scholar 

  28. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476

    Article  Google Scholar 

  29. Gianese G, Rosato V, Cleri F, Celino M, Morales P (2009) Atomic-scale modeling of the interaction between short polypeptides and carbon surfaces. J. Phys. Chem. B 113(35):12105–12112

    Article  Google Scholar 

  30. Raffaini G, Ganazzoli F (2004) Surface ordering of proteins adsorbed on graphite. J. Phys. Chem. B 108(36):13850–13854

    Article  Google Scholar 

  31. Tomasio SM, Walsh TR (2009) Modeling the binding affinity of peptides for graphitic surfaces. influences of aromatic content and interfacial shape. J Phys Chem C 113(20):8778–8785

    Article  Google Scholar 

  32. Balamurugan K, Gopalakrishnan R, Raman SS, Subramanian V (2010) Exploring the changes in the structure of alpha-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J. Phys. Chem. B 114(44):14048–14058

    Article  Google Scholar 

  33. Ou LC, Luo Y, Wei GH (2011) Atomic-level study of adsorption, conformational change, and dimerization of an alpha-helical peptide at graphene surface. J. Phys. Chem. B 115(32):9813–9822

    Article  Google Scholar 

  34. Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: Effect of contacting surface curvatures on binding affinity. J Phys Chem C 115:23323–23328

    Article  Google Scholar 

  35. Balamurugan K, Singam ERA, Subramanian V (2011) Effect of curvature on the alpha-helix breaking tendency of carbon based nanomaterials. J Phys Chem C 115(18):8886–8892

    Article  Google Scholar 

  36. Bianco A (2013) Graphene: Safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl 52(19):4986–4997

    Article  Google Scholar 

  37. Yang K, Li Y, Tan X, Peng R, Liu Z (2013) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9(9–10):1492–1503

    Article  Google Scholar 

  38. Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168

    Article  Google Scholar 

  39. Yoon OJ, Kim I, Sohn I Y, Kieu TT, Lee N-E (2014) Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing. J Biomed Mat Res Part A 102. doi:10.1002/jbm.a.34886

  40. Friederich E, Vancompernolle K, Louvard D, Vandekerckhove J (1999) Villin function in the organization of the actin cytoskeleton—correlation of in vivo effects to its biochemical activities in vitro. J Biol Chem 274(38):26751–26760

    Article  Google Scholar 

  41. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  Google Scholar 

  42. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330(6002):341–346

    Article  Google Scholar 

  43. Snow CD, Nguyen N, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420(6911):102–106

    Article  Google Scholar 

  44. Chiu TK, Kubelka J, Herbst-Irmer R, Eaton WA, Hofrichter J et al (2005) High-resolution x-ray crystal structures of the villin headpiece subdomain, an ultrafast folding protein. Proc Natl Acad Sci USA 102(21):7517–7522

    Article  Google Scholar 

  45. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  Google Scholar 

  46. Gong XJ, Li JY, Lu HJ, Wan RZ, Li JC et al (2007) A charge-driven molecular water pump. Nat Nanotechnol 2:709–712

    Article  Google Scholar 

  47. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  Google Scholar 

  48. Team RDC (2008) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  49. Fan WJ, Zeng J, Zhang RQ (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885

    Article  Google Scholar 

  50. Zuo GH, Huang Q, Wei GH, Zhou RH, Fang HP (2010) Plugging into proteins: Poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514

    Article  Google Scholar 

  51. Ge C, Du JF, Zhao L, Wang L, Liu Y et al (2011) Competitive binding of human serum proteins on single-wall carbon nanotubes reduces cytotoxicity. Proc Nat Acad Sci USA 108 (in press)

    Google Scholar 

  52. Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–200

    Article  Google Scholar 

  53. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127(35):12323–12328

    Article  Google Scholar 

  54. Zhao XC (2011) Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: a molecular simulation study. J Phys Chem C 115:6181–6189

    Article  Google Scholar 

  55. Zhao X, Johnson JK (2007) Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc 129(34):10438–10445

    Article  Google Scholar 

  56. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  57. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3(6):363–368

    Article  Google Scholar 

  58. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of c60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619

    Article  Google Scholar 

  59. Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719

    Article  Google Scholar 

  60. Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8(9):2751–2756

    Article  Google Scholar 

  61. Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583

    Article  Google Scholar 

  62. Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395

    Article  Google Scholar 

  63. Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601

    Article  Google Scholar 

  64. Liu S, Hu M, Zeng TH, Wu R, Jiang R et al (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33):12364–12372

    Article  Google Scholar 

  65. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110(30):12295–12300

    Article  Google Scholar 

  66. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  Google Scholar 

  67. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  Google Scholar 

  68. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited‖. J Phys Chem B 102(23):4477–4482

    Article  Google Scholar 

  69. Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the ph-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1):235–241

    Article  Google Scholar 

  70. Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 4(4):2300–2306

    Article  Google Scholar 

  71. Gómez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S et al (2010) Atomic structure of reduced graphene oxide. Nano Lett 10(4):1144–1148

    Article  Google Scholar 

  72. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019

    Article  Google Scholar 

  73. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    Article  Google Scholar 

  74. Liu P, Huang X, Zhou R, Berne BJ (2005) Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437(7055):159–162

    Article  Google Scholar 

  75. Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305(5690):1605–1609

    Article  Google Scholar 

  76. Berne BJ, Weeks JD, Zhou R (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103

    Article  Google Scholar 

  77. Zhao J, Deng B, Lv M, Li J, Zhang Y et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater. (in press)

    Google Scholar 

  78. Gibson MC, Perrimon N (2003) Apicobasal polarization: Epithelial form and function. Curr Opin Cell Biol 15:747–752

    Article  Google Scholar 

  79. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C et al (2009) Graphene at the edge: Stability and dynamics. Science 323(5922):1705–1708

    Article  Google Scholar 

  80. Huang JY, Ding F, Yakobson BI, Lu P, Qi L et al (2009) In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc Natl Acad Sci USA 106(25):10103–10108

    Article  Google Scholar 

  81. Xie L, Wang H, Jin C, Wang X, Jiao L et al (2011) Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, raman spectroscopy, and electrical properties. J Am Chem Soc 133(27):10394–10397

    Article  Google Scholar 

  82. Warner JH, Schäffel F, Rümmeli MH, Büchner B (2009) Examining the edges of multi-layer graphene sheets. Chem Mat 21(12):2418–2421

    Article  Google Scholar 

  83. Song B, Schneider GGF, Xu Q, Pandraud GG, Dekker C et al (2011) Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett 11(6):2247–2250

    Google Scholar 

  84. Leroy F, Dos Santos DJ, Muller-Plathe F (2009) Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol Rapid Commun 30(9–10):864–870

    Article  Google Scholar 

  85. Gu Y, Sun W, Wang G, Fang N (2011) Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J Am Chem Soc 133(15):5720–5723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Graphene and Derivatives. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics