Skip to main content

Carbon Nanotubes

  • Chapter
  • First Online:
Modeling of Nanotoxicity

Abstract

As mentioned in previous chapters, carbon nanotubes (CNTs) are widely used nanomaterials (NMs) nowadays in both industrial and medical applications [1]. CNTs have significantly promising biomedical applications, such as drug design [2], drug delivery [3], tumor therapy [4], tissue engineering [5], DNA recognition [6], and biosensor design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68

    Article  Google Scholar 

  3. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA et al (2009) Targeted killing of cancer cells in vivo and in vitro with egf-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316

    Article  Google Scholar 

  4. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5(8):1277–1301

    Article  Google Scholar 

  5. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  Google Scholar 

  6. Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253

    Article  Google Scholar 

  7. Liu N, Zhang Q, Chan-Park MB, Li C, Chen P (2009) Carbon nanotubes for electrochemical and electronic biosensing applications. Nanosci Biomed 205–246

    Google Scholar 

  8. Thayer AM (2007) Carbon nanotubes by the metric ton. Chem Eng News 85(46):29–35

    Article  Google Scholar 

  9. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 4:747–751

    Article  Google Scholar 

  10. Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of carbon nanotubes. Adv Experi Med Biol 620:181–204

    Article  Google Scholar 

  11. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  Google Scholar 

  12. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481

    Article  Google Scholar 

  13. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221

    Article  Google Scholar 

  14. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708

    Article  Google Scholar 

  15. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456

    Article  Google Scholar 

  16. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS et al (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382

    Article  Google Scholar 

  17. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  Google Scholar 

  18. Bai YH, Zhang Y, Zhang JP, Mu QX, Zhang WD et al (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5(9):683–689

    Article  Google Scholar 

  19. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  Google Scholar 

  20. Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104:2029–2030

    Article  Google Scholar 

  21. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  Google Scholar 

  22. Zhao XC, Liu RT (2012) Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40:244–255

    Article  Google Scholar 

  23. Chen Z, Chen H, Meng H, Xing GM, Gao XY et al (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharm 230(3):364–371

    Article  Google Scholar 

  24. Chen Z, Meng H, Xing GM, Chen CY, Zhao YL et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  Google Scholar 

  25. Jia G, Wang HF, Yan L, Wang X, Pei RJ et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Tech 39(5):1378–1383

    Article  Google Scholar 

  26. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    Article  Google Scholar 

  27. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  28. Zuo GH, Huang Q, Wei GH, Zhou RH, Fang HP (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514

    Article  Google Scholar 

  29. Zuo GH, Gu W, Fang HP, Zhou RH (2011) Carbon nanotube wins the competitive binding over proline-rich motif ligand on sh3 domain. J Phys Chem C 115(25):12322–12328

    Article  Google Scholar 

  30. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599

    Article  Google Scholar 

  31. Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216

    Article  Google Scholar 

  32. Yi CQ, Fong CC, Zhang Q, Lee ST, Yang MS (2008) The structure and function of ribonuclease a upon interacting with carbon nanotubes. Nanotechnology 19(9):095102

    Article  Google Scholar 

  33. Ge CC, Du JF, Zhao LN, Wang LM, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108(41):16968–16973

    Article  Google Scholar 

  34. Chiu CC, Maher MC, Dieckmann GR, Nielsen SO (2010) Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano 4(5):2539–2546

    Article  Google Scholar 

  35. Nepal D, Geckeler KE (2006) Ph-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3):406–412

    Article  Google Scholar 

  36. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259–1265

    Article  Google Scholar 

  37. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW et al (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13–14):1912–1915

    Article  Google Scholar 

  38. Goldberg-Oppenheimer P, Regev O (2007) Exploring a nanotube dispersion mechanism with gold-labeled proteins via cryo-tem imaging. Small 3(11):1894–1899

    Article  Google Scholar 

  39. Zhong J, Song L, Meng J, Gao B, Chu WS et al (2009) Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4):967–973

    Article  Google Scholar 

  40. Yan L, Zhao F, Li SJ, Hu ZB, Zhao YL (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3(2):362–382

    Article  Google Scholar 

  41. Salvador-Morales C, Townsend P, Flahaut E, Venien-Bryan C, Vlandas A et al (2007) Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45(3):607–617

    Article  Google Scholar 

  42. Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M et al (1996) Altered surfactant function and structure in sp-a gene targeted mice. Proc Natl Acad Sci USA 93(18):9594–9599

    Article  Google Scholar 

  43. Botas C, Poulain F, Akiyama J, Brown C, Allen L et al (1998) Altered surfactant homeostasis and alveolar type ii cell morphology in mice lacking surfactant protein d. Proc Natl Acad Sci USA 95(20):11869–11874

    Article  Google Scholar 

  44. Zuo G, Kang SG, Xiu P, Zhao Y, Zhou R (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9:1546–1556

    Article  Google Scholar 

  45. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1(4):313–316

    Article  Google Scholar 

  46. Zhang B, Xing YH, Li ZW, Zhou HY, Mu QX et al (2009) Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9(6):2280–2284

    Article  Google Scholar 

  47. Chen HI, Sudol M (1995) The ww domain of yes-associated protein binds a proline-rich ligand that differs from the consensus established for src homology 3-binding modules. Proc Natl Acad Sci USA 92(17):7819–7823

    Article  Google Scholar 

  48. Garrus JE, Schwedler UKV, Pornillos OW, Morham SG, Zavitz KH et al. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding. Cell 107:55–65

    Google Scholar 

  49. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase pin1 restores the function of alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788

    Article  Google Scholar 

  50. Sudol M, Bork P, Einbond A, Kastury K, Druck T et al (1995) Characterization of the mammalian yap (yes-associated protein) gene and its role in defining a novel protein module, the ww domain. J Biol Chem 270(24):14733–14741

    Article  Google Scholar 

  51. Zheng HW, You H, Zhou XZ, Murray SA, Uchida T et al (2002) The prolyl isomerase pin1 is a regulator of p53 in genotoxic response. Nature 419(6909):849–853

    Article  Google Scholar 

  52. Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of ww domains and design of a ww prototype. Nat Struct Mol Biol 7(5):375–379

    Article  Google Scholar 

  53. Huang X, Poy F, Zhang RG, Joachimiak A, Sudol M et al (2000) Structure of a ww domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol 7(8):634–638

    Article  Google Scholar 

  54. Sudol M (1996) Structure and function of the ww domain. Proc Biophys Mol Biol 65(1–2):113–132

    Article  Google Scholar 

  55. Procacci P (2011) Thermodynamics of stacking interactions in proteins. Annual Reports Section “C” (Phys Chem) 107 (0):242–262

    Google Scholar 

  56. Zuo GH, Fang HP, Zhou RH (2011) Nanotoxicity: exploring the interactions between carbon nanotubes and proteins. In Carbon nanotubes, Marulanda JM ed. InTech Publisher pp 539–564

    Google Scholar 

  57. Zuo GH, Hu J, Fang HP (2007) Protein folding under mediation of ordering water: An off-lattice go-like model study. Chin Phys Lett 24(8):2426–2429

    Article  Google Scholar 

  58. Zuo GH, Xiu P, Zhou X, Zhou RH, Fang HP (2012) Conformational changes of the protein domains upon binding with carbon nanotubes studied by molecular dynamics simulations. Curr. Phys. Chem. 2:12–22

    Article  Google Scholar 

  59. Fan WJ, Zeng J, Zhang RQ (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885

    Article  Google Scholar 

  60. Li XJ, Chen W, Zhan QW, Dai LM, Sowards L et al (2006) Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B 110(25):12621–12625

    Article  Google Scholar 

  61. Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470

    Article  Google Scholar 

  62. Salzmann CG, Ward MAH, Jacobs RMJ, Tobias G, Green MLH (2007) Interaction of tyrosine-, tryptophan-, and lysine-containing polypeptides with single-wall carbon nanotubes and its relevance for the rational design of dispersing agents. J Phys Chem C 111(50):18520–18524

    Article  Google Scholar 

  63. Su Z, Mui K, Daub E, Leung T, Honek J (2007) Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. J Phys Chem B 111(51):14411–14417

    Article  Google Scholar 

  64. Su ZD, Leung T, Honek JF (2006) Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B 110(47):23623–23627

    Article  Google Scholar 

  65. Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–200

    Article  Google Scholar 

  66. Xie H, Becraft EJ, Baughman RH, Dalton AB, Dieckmann GR (2008) Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J Pept Sci 14(2):139–151

    Article  Google Scholar 

  67. Zheng LF, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem C 113:3978–3985

    Article  Google Scholar 

  68. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127(35):12323–12328

    Article  Google Scholar 

  69. Yang ZX, Wang ZG, Tian XL, Xiu P, Zhou RH (2012) Amino acid analogues bind to carbon nanotube via pi-pi interactions: Comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136(2):025103

    Article  Google Scholar 

  70. Fan W, Zeng J, Zhang R (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885

    Article  Google Scholar 

  71. Wang C, Li S, Zhang R, Lin Z (2012) Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. Nanoscale 4(4):1146–1153

    Article  Google Scholar 

  72. Gianese G, Rosato V, Cleri F, Celino M, Morales P (2009) Atomic-scale modeling of the interaction between short polypeptides and carbon surfaces. J Phys Chem B 113(35):12105–12112

    Article  Google Scholar 

  73. Chiu CC, Dieckmann GR, Nielsen SO (2008) Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 112(51):16326–16333

    Article  Google Scholar 

  74. Sansom MSP, Wallace EJ, D’Rozario RSG, Sanchez BM (2010) A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale 2(6):967–975

    Article  Google Scholar 

  75. Tomasio SD, Walsh TR (2007) Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys 105(2–3):221–229

    Article  Google Scholar 

  76. Tomasio SM, Walsh TR (2009) Modeling the binding affinity of peptides for graphitic surfaces. Influences of aromatic content and interfacial shape. J Phys Chem C 113(20):8778–8785

    Article  Google Scholar 

  77. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  78. Berne BJ, Weeks JD, Zhou RH (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103

    Article  Google Scholar 

  79. Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429(4–6):497–502

    Article  Google Scholar 

  80. Bertoncini P, Chauvet O (2010) Conformational structural changes of bacteriorhodopsin adsorbed onto single-walled carbon nanotubes. J Phys Chem B 114(12):4345–4350

    Article  Google Scholar 

  81. Zhao XC, Liu RT, Chi ZX, Teng Y, Qin PF (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114(16):5625–5631

    Article  Google Scholar 

  82. Wijaya IPM, Gandhi S, Nie TJ, Wangoo N, Rodriguez I et al. (2009) Protein/carbon nanotubes interaction: the effect of carboxylic groups on conformational and conductance changes. Appl Phys Lett 95 (7)

    Google Scholar 

  83. Zuo GH, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Carbon Nanotubes. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics