Skip to main content

The First Alternative of the Optimal Homotopy Asymptotic Method

  • Chapter
The Optimal Homotopy Asymptotic Method

Abstract

In this chapter, we consider m = 2 into Eq. 2.29 such that we obtain the second-order approximate solution in the form

$$ \overline{u}\left(x,{C}_i\right)={u}_0(x)+{u}_1\left(x,{C}_i\right)+{u}_2\left(x,{C}_i\right) $$

where the terms u0, u1 and u2 are given by the linear differential equations 2.19, 2.20, 2.23, 2.25 and 2.26 respectively or, more precisely, by the following equations:

$$ \begin{array}{cc}\hfill L\left({u}_0(x)\right)+g(x)=0,\hfill & \hfill B\left({u}_0,\frac{d{u}_0}{dx}\right)\hfill \end{array}=0 $$
$$ \begin{array}{cc}\hfill L\left({u}_1\left(x,{C}_i\right)\right)={H}_1\left(x,{C}_i\right){N}_0\left({u}_0(x)\right),\hfill & \hfill B\left({u}_1,\frac{d{u}_1}{dx}\right)=0\hfill \end{array} $$
$$ \begin{array}{c}\hfill \begin{array}{l}L\left({u}_2\left(x,{C}_i\right)\right)-L\left({u}_1\left(x,{C}_i\right)\right)=\\ {}={H}_1\left(x,{C}_i\right)\left[L\left({u}_1\left(x,{C}_i\right)\right)+{N}_1\left({u}_0(x),{u}_1\left(x,{C}_i\right)\right)\right]+{H}_2^{*}\left(x,{C}_i\right){N}_0\left({u}_0(x)\right),\end{array}\hfill \\ {}\hfill B\left({u}_2,\frac{d{u}_2}{dx}\right)=0\hfill \end{array} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Marinca, N. Herişanu, I. Nemeş, Optimal homotopy asymptotic method with application to thin film flow. Cent. Eur. J. Phys. 6, 648–653 (2008)

    Article  Google Scholar 

  2. T. Hayat, M. Sajid, On analytic solution of thin film flow of fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  3. M. Sajid, T. Hayat, S. Asghar, On the analytic solution of the steady flow of a fourth grade fluid. Phys. Lett. A 355, 18–26 (2000)

    Article  Google Scholar 

  4. V. Marinca, N. Herisanu, An optimal homotopy perturbation approach to thin film flow of a fourth grade fluid. AIP Conf. Proc. 1479, 2383–2386 (2012)

    Article  Google Scholar 

  5. A.M. Siddiqui, R. Mahmood, Q.K. Ghori, Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 352, 404–410 (2006)

    Article  MATH  Google Scholar 

  6. G.B. Jeffery, The two-dimensional steady motion of a viscous fluid. Philos. Mag. 6, 455–465 (1915)

    Article  Google Scholar 

  7. G. Hamel, Spiralformige Bewegungen Zaher Flussigkeiten. Jahresber. Deutsch. Math. Verein. 25, 34–60 (1916)

    MATH  Google Scholar 

  8. L. Rosenhead, The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. R. Soc. A 175, 436–467 (1940)

    Article  Google Scholar 

  9. H. Schlichting, Boundary-Layer Theory (McGraw-Hill, New York, 2000)

    Book  MATH  Google Scholar 

  10. V. Marinca, N. Herisanu, An optimal homotopy asymptotic approach to nonlinear MHD Jeffery-Hamel flow. Math. Probl. Eng. Article ID 169056 (2011)

    Google Scholar 

  11. A.A. Joneidi, G. Domairry, M. Babaelahi, Three analytical method applied to Jeffery-Hamel flow. Commun. Nonlinear Sci. Numer. Simul. 15, 3423–3434 (2010)

    Article  Google Scholar 

  12. S.M. Moghimi, D.D. Ganji, H. Bararnia, M. Hosseini, M. Jalaal, Homotopy perturbation method for nonlinear Jeffery-Hamel problem. Comput. Math. Appl. 61, 2213–2216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. R.E. Mickens, Oscillations in Planar Dynamic Systems (World Scientific Publishing, Singapore, 1996)

    Book  MATH  Google Scholar 

  14. W.P. Sun, B.S. Wu, C.W. Lim, Approximate analytical solutions for oscillations of a mass attached to a stretched elastic wire. J. Sound Vibr. 300, 1042–1047 (2007)

    Article  MATH  Google Scholar 

  15. L. Xu, Application of He’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire. Phys. Lett. A 368, 259–261 (2007)

    Article  Google Scholar 

  16. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  17. V. Marinca, N. Herisanu, Determination of periordic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. J Sound Vibr. 329, 1450–1459 (2010)

    Article  Google Scholar 

  18. V. Marinca, N. Herisanu, Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches (Springer, Berlin, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  19. R.E. Mickens, D. Semwogerere, Fourier analysis of a rational harmonic balance approximation for periodic solutions. J Sound Vibr. 195, 528–530 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. R.E. Mickens, Oscillations in an x4/3 potential. J Sound Vibr. 246, 375–378 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Cooper, R.E. Mickens, Generalised harmonic balance numerical method for determining analytical approximation in the periodic solutions of the x4/3 potential. J. Sound Vibr. 250, 951–954 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Awrejcewicz, I.V. Andrianov, Oscillations of non-linear system with restoring force close to sign(x). J. Sound Vibr. 252, 962–966 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. W.T. van Horssen, On the periods of the periodic solutions of the non-linear oscillator equation +x 1/(2n+1)=0. J. Sound Vibr. 269, 961–964 (2003)

    Article  Google Scholar 

  24. H. Hu, Z.-G. Xiang, Oscillations in an x(2n+2)/(2n+1) potential. J. Sound Vibr. 192, 43–64 (1996)

    Article  Google Scholar 

  25. H.P.W. Gotlieb, Frequencies of oscillations with fractional power linearities. J. Sound Vibr. 26, 557–566 (2003)

    Article  Google Scholar 

  26. V.N. Pilipciuk, Analytical study of vibrating systems with strong nonlinearities by employing saw-tooth time transformations. J Sound Vibr. 192, 43–64 (1996)

    Article  Google Scholar 

  27. V.N. Pilipciuk, Oscillations with a generalised power-form elastic term. J Sound Vibr 270, 270–272 (2004)

    Google Scholar 

  28. H.-M. Liu, Approximate period of nonlinear oscillation with discontinuities by modified Lindstedt-Poincare method, Chaos. Solitons Fractals 23, 577–579 (2005)

    Article  MATH  Google Scholar 

  29. C.W. Lim, B.S. Wu, Accurate higher-order approximations to frequencies of nonlinear oscillators with fractional powers. J. Sound Vibr. 281, 1157–1162 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. F.O. Zengin, M.O. Kaya, S.A. Demirbag, Applications of parameter-expansion method to nonlinear oscillators with discontinuities. Int. J. Nonlin. Sci. Numer. Simul. 9, 267–270 (2008)

    Article  MathSciNet  Google Scholar 

  31. J.E. Bolwell, Solutions of free nonlinear oscillators with power law in one dimension. J Sound Vibr. 252, 955–961 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. J.I. Ramos, Piecewise-linearized method for oscillators with fractional power nonlinearities. J Sound Vibr. 300(502–521) (2007)

    Google Scholar 

  33. L. Cveticanin, Oscillator with fraction order restoring force. J. Sound Vibr. 320, 1064–1077 (2008)

    Article  Google Scholar 

  34. I. Kovacic, On the motion of nonlinear oscillators with fractional-order restoring force and time variable parameters. Phys. Lett. A 373, 1839–1840 (2009)

    Article  MATH  Google Scholar 

  35. A. Belendez, C. Pascual, M. Ortuno, T. Belendez, S. Gallego, Application of a modified homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities. Nonlin Anal. Real World Appl. 10, 601–610 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marinca, V., Herisanu, N. (2015). The First Alternative of the Optimal Homotopy Asymptotic Method. In: The Optimal Homotopy Asymptotic Method. Springer, Cham. https://doi.org/10.1007/978-3-319-15374-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15374-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15373-5

  • Online ISBN: 978-3-319-15374-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics