Skip to main content

A Note on the Internal Logic of Constructive Mathematics: The Gel’fond-Schneider Theorem in Transcendental Number Theory

  • Chapter
  • First Online:
  • 1064 Accesses

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

The question of an internal logic of mathematical practice is examined from a finitist point of view. The Gel’fond–Schneider theorem in transcendental number theory serves as an instance of a proof-theoretical investigation motivated and justified by constructivist foundations of logic and mathematics. Constructivist notions are emphasized by contrasting the arithmetical proof procedure of infinite descent with the principle of transfinite induction. It is argued that intuitionistic logic cannot alone provide secure foundations for constructivist mathematics and a finitist logic is briefly sketched in the framework of polynomial arithmetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker, A.: Transcendental Number Theory. Cambridge University Press, London (1975)

    Book  MATH  Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  3. Bishop, E.: Mathematics as a Numerical Language. In: Intuitionism and Proof Theory, pp. 53–71. North-Holland, Amsterdam, New York (1970)

    Google Scholar 

  4. Dummett, M.: Elements of Intuitionism. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  5. de Fermat, P.: Oeuvres, vol. 2, Gauthier-Villars, Paris (1894)

    MATH  Google Scholar 

  6. Gauthier, Y.:. Hilbert and the Internal Logic of Mathematics. Synthese 101, 1–14 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Gauthier, Y.: Internal Logic. Foundations of Mathematics from Kronecker to Hilbert. Kluwer, Dordrecht, Boston, London (2002)

    MATH  Google Scholar 

  8. Gauthier, Y.: Logique arithmétique. L’arithmétisation de la logique. Presses de l’Université Québec, Laval (2010)

    Google Scholar 

  9. Gauthier, Y.:. Hilbert Programme and Applied Proof Theory. Log. Anal. 213, 40–68 (2011)

    Google Scholar 

  10. Gauthier, Y.: Kronecker in Contemporary Mathematics. General Arithmetic as a Foundational Programme. Rep. Math. Log., 48, 37–65 (2013)

    MATH  MathSciNet  Google Scholar 

  11. Gel’fond, A.O.: Sur le septieme Probleme de Hilbert. C. r. Acad. Sci. URSS Mosc. 2 1–6 (1934)

    MathSciNet  Google Scholar 

  12. Gel’fond, A.O.: Sur le septieme Probleme de Hilbert. Bull. Acad. Sci. URSS Leningr. 7, 623–634 (1934)

    Google Scholar 

  13. Gel’fond, A.O., Linnik, V.: Elementary Methods in Analytic Number Theory. Rand McNally (1965)

    Google Scholar 

  14. Gentzen, G.: Collected Papers, ed. by E. Szabo. North-Holland, Amsterdam (1969)

    Google Scholar 

  15. Herbrand, J.: É crits logiques, ed. by J. van Heijenoort. PUF, Paris (1968)

    Google Scholar 

  16. Kolmogorov, A.N.: O Prinzipe tertium non datur. Mat. Sb. 32, 646–667 (1925)

    MATH  Google Scholar 

  17. Kreisel, G.: Ordinal logics and the Characterization of Informal Concepts of Proof. Proc. 1958 Int. Congr. Math., pp. 289–299. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  18. Kreisel, G.: What Have We Learnt From Hilbert’s Second Problem? Mathematical Developments Arising From Hilbert’s Problems, pp. 93–130. American Mathematical Society, Providence, Rhode Island (1976)

    Google Scholar 

  19. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Größen. Werke, vol. III, pp. 245–387, ed. by K. Hensel, 5 vols. Chelsea, New York (1968)

    Google Scholar 

  20. Kronecker, L.: Zur Theorie der Formen höherer Stufe. Werke, vol. II, pp. 419–424, ed. by K. Hensel, 5 vols. Chelsea, New York (1968)

    Google Scholar 

  21. Serre, J.-P.: How to use finite fields for problems concerning infinite fields. Proc. Conf. Marseille-Luminy, Cont. Math. Series, AMS (2007)

    Google Scholar 

  22. Mochizuki, S.: Inter-universal Teichmüller Theory IV. Log-volume Computations and Set-theoretic Foundations. Homepage of S. Mochizuki, August 2012 (2012)

    Google Scholar 

  23. Schneider, T.: Transzendenzuntersuchungen periodischer Funktionen. J. Reine Angew. Math. 172, 65–69 (1934)

    Google Scholar 

  24. Schneider, T.: Transzendenzuntersuchungen periodischer Funktionen II. J. Reine Angew. Math. 172, 70–74 (1934)

    MATH  Google Scholar 

  25. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 1. North-Holland, Amsterdam (1988)

    Google Scholar 

  26. Troelstra, A.S.: Constructivism and Proof Theory. ILLC, University van Amsterdam (2003)

    Google Scholar 

  27. Voevodsky, V.: Univalent Foundations Project. A modified version of an NSF grant application. October 1, 2010.

    Google Scholar 

  28. Weil, A.: On the Riemann Hypothesis in Function Fields. Proc. Natl. Acad. Sci. USA 27, 345–347 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  29. Weil, A.: Number Theory. An Approach Through History. From Hammourabi to Legendre. Birkhäuser, Basel (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvon Gauthier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gauthier, Y. (2015). A Note on the Internal Logic of Constructive Mathematics: The Gel’fond-Schneider Theorem in Transcendental Number Theory. In: Koslow, A., Buchsbaum, A. (eds) The Road to Universal Logic. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-15368-1_13

Download citation

Publish with us

Policies and ethics