Skip to main content

Pharmacogenomics for Haemoglobinopathies Therapeutics

  • Chapter
  • First Online:
Preventive and Predictive Genetics: Towards Personalised Medicine

Abstract

Individual genetic composition has a fundamental role in the variations observed in drug response and tolerance. Pharmacogenomics aims to delineate the individual genetic profiles and drug response/toxicity. Nowadays, there are several medical disciplines where pharmacogenomics is readily applicable, while in others its usefulness is yet to be shown. Recent experimental evidence suggest that single nucleotide polymorphisms (SNPs) in modifier genes residing outside the human β-globin cluster are significantly associated with response to hydroxyurea (HU) treatment in β-type haemoglobinopathies patients, deducted from the increase in foetal haemoglobin levels. This chapter aims to provide an update and to discuss future challenges on the application of pharmacogenomics for β-type haemoglobinopathies therapeutics in relation to the current pharmacological treatment modalities for those disorders and the complexity of their pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pace BS, Zein S (2006) Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological foetal hemoglobin induction. Dev Dyn 235(7):1727–1737

    Google Scholar 

  2. Schechter AN (2008) Hemoglobin research and the origins of molecular medicine. Blood 112(10):3927–3938

    Google Scholar 

  3. Weatherall DJ (2001) Towards molecular medicine; reminiscences of the haemoglobin field, 1960–2000. Br J Haematol 115(4):729–738

    Google Scholar 

  4. Patrinos GP, Antonarakis SE (2010) Human hemoglobin, vol 11. Vogel and Motulsky’s human genetics: problems and approaches. Springer, Berlin

    Google Scholar 

  5. Kohne E (2011) Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int 108(31–32):532–540

    Google Scholar 

  6. Higgs DR (2013) The molecular basis of α-thalassaemia. Cold Spring Harb Perspect Med 3(1):a011718

    Google Scholar 

  7. Nienhuis AW, Nathan DG (2012) Pathophysiology and clinical manifestations of the β-thalassaemias. Cold Spring Harb Perspect Med 2(12):a011726

    Google Scholar 

  8. Thein SL (2011) Milestones in the history of hemoglobin research (in memory of professor Titus H.J. Huisman). Hemoglobin 35(5–6):450–462

    Google Scholar 

  9. Steinberg MH, Rodgers GP (2001) Pharmacologic modulation of foetal hemoglobin. Medicine (Baltimore) 80(5):328–344

    Google Scholar 

  10. Perrine SP (2005) Foetal globin induction-can it cure beta thalassaemia? Hematol Am Soc Hematol Educ Program 38–44

    Google Scholar 

  11. Karimi M, Darzi H, Yavarian M (2005) Haematologic and clinical responses of thalassaemia intermedia patients to hydroxyurea during 6 years of therapy in Iran. J Pediatr Hematol Oncol 27(7):380–385

    Google Scholar 

  12. Patrinos GP, Grosveld FG (2008) Pharmacogenomics and therapeutics of hemoglobinopathies. Hemoglobin 32(1–2):229–236

    Google Scholar 

  13. Italia KY, Jijina FJ, Merchant R, Panjwani S, Nadkarni AH, Sawant PM, Nair SB, Ghosh K, Colah RB (2009) Response to hydroxyurea in beta thalassaemia major and intermedia: experience in western India. Clin Chim Acta 407(1–2):10–15

    Google Scholar 

  14. Karimi M, Cohan N, Mousavizadeh K, Moosavizadeh K, Falahi MJ, Haghpanah S (2010) Adverse effects of hydroxyurea in beta-thalassaemia intermedia patients: 10 years’ experience. Pediatr Hematol Oncol 27(3):205–211

    Google Scholar 

  15. Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ (1995) Oral sodium phenylbutyrate therapy in homozygous beta thalassaemia: a clinical trial. Blood 85(1):43–49

    Google Scholar 

  16. Boosalis MS, Bandyopadhyay R, Bresnick EH, Pace BS, Van DeMark K, Zhang B, Faller DV, Perrine SP (2001) Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 97(10):3259–3267

    Google Scholar 

  17. Pace BS, White GL, Dover GJ, Boosalis MS, Faller DV, Perrine SP (2002) Short-chain fatty acid derivatives induce foetal globin expression and erythropoiesis in vivo. Blood 100(13):4640–4648

    Google Scholar 

  18. Vichinsky E (2012) Emerging ‘A’ therapies in hemoglobinopathies: agonists, antagonists, antioxidants, and arginine. Hematol Am Soc Hematol Educ Program 2012:271–275

    Google Scholar 

  19. Di Nuzzo DV, Fonseca SF (2004) [Sickle cell disease and infection]. J Pediatr (Rio J) 80(5):347–354

    Google Scholar 

  20. Schrier SL (2002) Pathophysiology of thalassaemia. Curr Opin Hematol 9(2):123–126

    Google Scholar 

  21. Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA, Krauss RM, McLeod HL, Ratain MJ, Relling MV, Ring HZ, Shuldiner AR, Weinshilboum RM, Weiss ST, Network PR (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145(10):749–757

    Google Scholar 

  22. Chang YC, Smith KD, Moore RD, Serjeant GR, Dover GJ (1995) An analysis of foetal hemoglobin variation in sickle cell disease: the relative contributions of the X-linked factor, beta-globin haplotypes, alpha-globin gene number, gender, and age. Blood 85(4):1111–1117

    Google Scholar 

  23. Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ (1997) Foetal hemoglobin in sickle cell anaemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood 89(3):1078–1088

    Google Scholar 

  24. Bakanay SM, Dainer E, Clair B, Adekile A, Daitch L, Wells L, Holley L, Smith D, Kutlar A (2005) Mortality in sickle cell patients on hydroxyurea therapy. Blood 105(2):545–547

    Google Scholar 

  25. Alebouyeh M, Moussavi F, Haddad-Deylami H, Vossough P (2004) Hydroxyurea in the treatment of major beta-thalassaemia and importance of genetic screening. Ann Hematol 83(7):430–433

    Google Scholar 

  26. Yavarian M, Karimi M, Bakker E, Harteveld CL, Giordano PC (2004) Response to hydroxyurea treatment in Iranian transfusion-dependent beta-thalassaemia patients. Haematologica 89(10):1172–1178

    Google Scholar 

  27. Ansari SH, Shamsi TS, Munzir S, Khan MT, Erum S, Perveen K, Farzana T, Ashraf M, Mehboob T, Moinuddin M (2013) Gγ-Xmn I polymorphism: a significant determinant of β-thalassaemia treatment without blood transfusion. J Pediatr Hematol Oncol 35(4):e153–e156

    Google Scholar 

  28. Bradai M, Pissard S, Abad MT, Dechartres A, Ribeil JA, Landais P, de Montalembert M (2007) Decreased transfusion needs associated with hydroxyurea therapy in Algerian patients with thalassaemia major or intermedia. Transfusion 47(10):1830–1836

    Google Scholar 

  29. Koren A, Levin C, Dgany O, Kransnov T, Elhasid R, Zalman L, Palmor H, Tamary H (2008) Response to hydroxyurea therapy in beta-thalassaemia. Am J Hematol 83(5):366–370.

    Google Scholar 

  30. Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, Kabra M, Saxena R, Choudhry VP (2005) Hydroxyurea in thalassaemia intermedia-a promising therapy. Ann Hematol 84(7):441–446

    Google Scholar 

  31. Ehsani MA, Hedayati-Asl AA, Bagheri A, Zeinali S, Rashidi A (2009) Hydroxyurea-induced haematological response in transfusion-independent beta-thalassaemia intermedia: case series and review of literature. Pediatr Hematol Oncol 26(8):560–565

    Google Scholar 

  32. Italia KY, Jijina FF, Merchant R, Panjwani S, Nadkarni AH, Sawant PM, Nair SB, Ghosh K, Colah RB (2010) Effect of hydroxyurea on the transfusion requirements in patients with severe HbE-beta-thalassaemia: a genotypic and phenotypic study. J Clin Pathol 63(2):147–150

    Google Scholar 

  33. Karimi M, Haghpanah S, Farhadi A, Yavarian M (2012) Genotype-phenotype relationship of patients with β-thalassaemia taking hydroxyurea: a 13-year experience in Iran. Int J Hematol 95(1):51–56

    Google Scholar 

  34. Rigano P, Pecoraro A, Calzolari R, Troia A, Acuto S, Renda D, Pantalone GR, Maggio A, Di Marzo R (2010) Desensitization to hydroxycarbamide following long-term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. Br J Haematol 151(5):509–515

    Google Scholar 

  35. Ma Q, Wyszynski DF, Farrell JJ, Kutlar A, Farrer LA, Baldwin CT, Steinberg MH (2007) Foetal hemoglobin in sickle cell anaemia: genetic determinants of response to hydroxyurea. Pharmacogenomics J 7(6):386–394

    Google Scholar 

  36. Borg J, Papadopoulos P, Georgitsi M, Gutiérrez L, Grech G, Fanis P, Phylactides M, Verkerk AJ, van der Spek PJ, Scerri CA, Cassar W, Galdies R, van Ijcken W, Ozgür Z, Gillemans N, Hou J, Bugeja M, Grosveld FG, von Lindern M, Felice AE, Patrinos GP, Philipsen S (2010) Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of foetal hemoglobin. Nat Genet 42(9):801–805

    Google Scholar 

  37. Tafrali C, Paizi A, Borg J, Radmilovic M, Bartsakoulia M, Giannopoulou E, Giannakopoulou O, Stojiljkovic-Petrovic M, Zukic B, Poulas K, Stavrou EF, Lambropoulou P, Kourakli A, Felice AE, Papachatzopoulou A, Philipsen S, Pavlovic S, Georgitsi M, Patrinos GP (2013) Genomic variation in the MAP3K5 gene is associated with β-thalassaemia disease severity and hydroxyurea treatment efficacy. Pharmacogenomics 14(5):469–483

    Google Scholar 

  38. Banan M, Bayat H, Azarkeivan A, Mohammadparast S, Kamali K, Farashi S, Bayat N, Khani MH, Neishabury M, Najmabadi H (2012) The XmnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian β-thalassaemia patients. Hemoglobin 36(4):371–380

    Google Scholar 

  39. Flanagan JM, Steward S, Howard TA, Mortier NA, Kimble AC, Aygun B, Hankins JS, Neale GA, Ware RE (2012) Hydroxycarbamide alters erythroid gene expression in children with sickle cell anaemia. Br J Haematol 157(2):240–248

    Google Scholar 

  40. Borg J, Phylactides M, Bartsakoulia M, Tafrali C, Lederer C, Felice AE, Papachatzopoulou A, Kourakli A, Stavrou EF, Christou S, Hou J, Karkabouna S, Lappa-Manakou C, Ozgur Z, van Ijcken W, von Lindern M, Grosveld FG, Georgitsi M, Kleanthous M, Philipsen S, Patrinos GP (2012) KLF10 gene expression is associated with high foetal hemoglobin levels and with response to hydroxyurea treatment in β-hemoglobinopathy patients. Pharmacogenomics 13(13):1487–1500

    Google Scholar 

  41. Kumkhaek C, Taylor JG, Zhu J, Hoppe C, Kato GJ, Rodgers GP (2008) Foetal haemoglobin response to hydroxycarbamide treatment and sar1a promoter polymorphisms in sickle cell anaemia. Br J Haematol 141(2):254–259

    Google Scholar 

  42. Giannopoulou E, Bartsakoulia M, Tafrali C, Kourakli A, Poulas K, Stavrou EF, Papachatzopoulou A, Georgitsi M, Patrinos GP (2012) A single nucleotide polymorphism in the HBBP1 gene in the human β-globin locus is associated with a mild β-thalassaemia disease phenotype. Hemoglobin 36(5):433–445

    Google Scholar 

  43. Hershko C, Link G, Konijn AM, Cabantchik ZI (2005) Objectives and mechanism of iron chelation therapy. Ann N Y Acad Sci 1054:124–135

    Google Scholar 

  44. Vanakker OM, De Paepe A (2013) Pharmacogenomics in children: advantages and challenges of next generation sequencing applications. Int J Pediatr 2013:136524

    Google Scholar 

Download references

Acknowledgements

We wish to thank Professors Frank Grosveld, Alex E. Felice, Sjaak Philipsen, Drs. Adamantia Papacatzopoulou, Joseph Borg, Sonja Pavlovic, Marios Phylactides, Marina Kleanthous, Alexandra Kourakli, Marianthi Georgitsi and Mrs. Christina Tafrali, Marina Bartsakou-lia, Arsinoi Paizi, Emily Giannopoulou, and Olga Giannakopoulou for their contribution at the various stages of our projects related to pharmacogenomics for haemoglobinopathies. Our work is supported by a RDF (Cyprus, ΠΔΕ046_02) and European Commission (ITHANET Coordination action 026539) grants to GPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Patrinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gravia, A., Chondrou, V., Katsila, T., Patrinos, G. (2015). Pharmacogenomics for Haemoglobinopathies Therapeutics. In: Grech, G., Grossman, I. (eds) Preventive and Predictive Genetics: Towards Personalised Medicine. Advances in Predictive, Preventive and Personalised Medicine, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-15344-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15344-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15343-8

  • Online ISBN: 978-3-319-15344-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics