Skip to main content

Pharmacogenetics of Coumarin Anticoagulant Therapy

  • Chapter
  • First Online:

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 9))

Abstract

Coumarins are effective drugs for treatment and prevention of thromboembolic events. However, their use requires a balancing act between the chance of underdosing which increases the risk of thromboembolic events and the chance of overdosing which increases the risk of haemorrhages. It has been shown that polymorphisms in VKORC1 and CYP2C9 explain 35–50 % of the dose variability, although patient characteristics and environmental factors also play a role. In this book chapter we discuss the pharmacogenetics of coumarin derivatives, clinical trials investigating the effectiveness of pre-treatment genotyping and the cost-effectiveness of pharmacogenetic-guided dosing.

Rianne M.F. van Schie and Talitha I. Verhoef authors contributed equally

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albers GW, Sherman DG, Gress DR, Paulseth JE, Petersen P (1991) Stroke prevention in nonvalvular atrial fibrillation: a review of prospective randomized trials. Ann Neurol 30(4):511–518. doi:10.1002/ana.410300402

    Google Scholar 

  2. Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B (1989) Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet 1(8631):175–179. doi:10.1016/S0140-6736(89)91200-2

    CAS  Google Scholar 

  3. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators (1990). N Engl J Med 323(22):1505–1511. doi:10.1056/NEJM199011293232201

    Google Scholar 

  4. Stroke Prevention in Atrial Fibrillation Study. Final results (1991). Circulation 84(2):527–539

    Google Scholar 

  5. Fareed J, Hoppensteadt DA, Fareed D, Demir M, Wahi R, Clarke M, Adiguzel C, Bick R (2008) Survival of heparins, oral anticoagulants, and aspirin after the year 2010. Semin Thromb Hemost 34(1):58–73. doi:10.1055/s-2008-1066025

    CAS  PubMed  Google Scholar 

  6. Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol 62(5):509–511. doi:10.1111/j.1365-2125.2006.02806.x

    PubMed Central  PubMed  Google Scholar 

  7. Pengo V, Pegoraro C, Cucchini U, Iliceto S (2006) Worldwide management of oral anticoagulant therapy: the ISAM study. J Thromb Thrombolysis 21(1):73–77. doi:10.1007/s11239-006-5580-y

    PubMed  Google Scholar 

  8. Ansell J, Hollowell J, Pengo V, Martinez-Brotons F, Caro J, Drouet L (2007) Descriptive analysis of the process and quality of oral anticoagulation management in real-life practice in patients with chronic non-valvular atrial fibrillation: the international study of anticoagulation management (ISAM). J Thromb Thrombolysis 23(2):83–91. doi:10.1007/s11239-006-9022-7

    PubMed  Google Scholar 

  9. Penning-van Beest FJ, van Meegen E, Rosendaal FR, Stricker BH (2001) Characteristics of anticoagulant therapy and comorbidity related to overanticoagulation. Thromb Haemost 86(2):569–574

    CAS  PubMed  Google Scholar 

  10. Hylek EM, Skates SJ, Sheehan MA, Singer DE (1996) An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N Engl J Med 335(8):540–546. doi:10.1056/NEJM199608223350802

    CAS  PubMed  Google Scholar 

  11. Hylek EM, Singer DE (1994) Risk factors for intracranial hemorrhage in outpatients taking warfarin. Ann Intern Med 120(11):897–902

    CAS  PubMed  Google Scholar 

  12. Oden A, Fahlen M, Hart RG (2006) Optimal INR for prevention of stroke and death in atrial fibrillation: a critical appraisal. Thromb Res 117(5):493–499

    CAS  PubMed  Google Scholar 

  13. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Heuzey JY L, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Zamorano JL (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European heart rhythm association and the heart rhythm society. Circulation 114(7):e257–e354

    PubMed  Google Scholar 

  14. Rosendaal FR (1996) The Scylla and Charybdis of oral anticoagulant treatment. N Engl J Med 335(8):587–589. doi:10.1056/NEJM199608223350810

    CAS  PubMed  Google Scholar 

  15. James AH, Britt RP, Raskino CL, Thompson SG (1992) Factors affecting the maintenance dose of warfarin. J Clin Pathol 45(8):704–706

    CAS  PubMed Central  PubMed  Google Scholar 

  16. van der Hooft CS, Sturkenboom MC, van Grootheest K, Kingma HJ, Stricker BH (2006) Adverse drug reaction-related hospitalisations: a nationwide study in The Netherlands. Drug Saf 29(2):161–168

    PubMed  Google Scholar 

  17. Schneeweiss S, Hasford J, Gottler M, Hoffmann A, Riethling AK, Avorn J (2002) Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study. Eur J Clin Pharmacol 58(4):285–291. doi:10.1007/s00228-002-0467-0

    PubMed  Google Scholar 

  18. Leendertse AJ, Egberts AC, Stoker LJ, van den Bemt PM (2008) Frequency of and risk factors for preventable medication-related hospital admissions in the Netherlands. Arch Intern Med 168(17):1890–1896. doi:10.1001/archinternmed.2008.3

    PubMed  Google Scholar 

  19. Budnitz DS, Shehab N, Kegler SR, Richards CL (2007) Medication use leading to emergency department visits for adverse drug events in older adults. Ann Intern Med 147(11):755–765

    PubMed  Google Scholar 

  20. Penning-van Beest FJ, Geleijnse JM, van Meegen E, Vermeer C, Rosendaal FR, Stricker BH (2002) Lifestyle and diet as risk factors for overanticoagulation. J Clin Epidemiol 55(4):411–417

    PubMed  Google Scholar 

  21. Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, Kolek MJ, Clarke JL, James BC, Anderson JL (2006) Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22(3):191–197. doi:10.1007/s11239-006-9030-7

    CAS  PubMed  Google Scholar 

  22. Schalekamp T, van Geest-Daalderop JH, Kramer MH, van Holten-Verzantvoort AT, de Boer A (2007) Coumarin anticoagulants and co-trimoxazole: avoid the combination rather than manage the interaction. Eur J Clin Pharmacol 63(4):335–343. doi:10.1007/s00228-007-0268-6

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Schalekamp T, Klungel OH, Souverein PC, de Boer A (2008) Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch Intern Med 168(2):180–185. doi:10.1001/archinternmed.2007.32

    PubMed  Google Scholar 

  24. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91(1):87–94. doi:10.1267/THRO04010087

    CAS  PubMed  Google Scholar 

  25. van Schie RM, Wessels JA, le Cessie S, de Boer A, Schalekamp T, van der Meer FJ, Verhoef TI, van Meegen E, Rosendaal FR, Maitland-van der Zee AH (2011) Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J 32(15):1909–1917. doi:10.1093/eurheartj/ehr116

    PubMed  Google Scholar 

  26. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G (2008) Pharmacology and management of the vitamin K antagonists: American college of chest physicians evidence-based clinical practice guidelines (8th Ed). Chest 133(6 Suppl):160S–198S. doi:10.1378/chest.08-0670

    CAS  PubMed  Google Scholar 

  27. Stafford DW (2005) The vitamin K cycle. J Thromb Haemost 3(8):1873–1878

    CAS  PubMed  Google Scholar 

  28. Schalekamp T, de Boer A (2010) Pharmacogenetics of oral anticoagulant therapy. Curr Pharm Des 16(2):187–203. doi:10.2174/138161210790112737

    CAS  PubMed  Google Scholar 

  29. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 75(6):1337–1346. doi:10.1124/mol.109.054833

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427(6974):537–541. doi:10.1038/nature02214

    CAS  PubMed  Google Scholar 

  31. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544. doi:10.1038/nature02254

    CAS  PubMed  Google Scholar 

  32. Mann KG (2005) The challenge of regulating anticoagulant drugs: focus on warfarin. Am Heart J 149(1 Suppl):36–42

    Google Scholar 

  33. Kroon C, de Boer A, Hoogkamer JF, Schoemaker HC, van der Meer EJ, Edelbroek PM, Cohen AF (1990) Detection of drug interactions with single dose acenocoumarol: new screening method? Int J Clin Pharmacol Ther Toxicol 28(8):355–360

    CAS  PubMed  Google Scholar 

  34. Summary of the Product Characteristics (SPC) Phenprocoumon (2011). http://db.cbg-meb.nl/IB-teksten/h03819.pdf.

  35. Summary of the Product Characteristics (SPC) Acenocoumarol (2012). http://db.cbg-meb.nl/IB-teksten/h04464.pdf.

  36. Ufer M (2005) Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 44(12):1227–1246

    CAS  PubMed  Google Scholar 

  37. Trager WF, Lewis RJ, Garland WA (1970) Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 13(6):1196–1204

    CAS  PubMed  Google Scholar 

  38. Kaminsky LS, Dunbar DA, Wang PP, Beaune P, Larrey D, Guengerich FP, Schnellmann RG, Sipes IG (1984) Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Drug Metab Dispos 12(4):470–477

    CAS  PubMed  Google Scholar 

  39. Hermans JJ, Thijssen HH (1989) The in vitro ketone reduction of warfarin and analogues. Substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 38(19):3365–3370

    CAS  PubMed  Google Scholar 

  40. Moreland TA, Hewick DS (1975) Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate. Biochem Pharmacol 24(21):1953–1957

    CAS  PubMed  Google Scholar 

  41. Kelly JG, O'Malley K (1979) Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 4(1):1–15

    CAS  PubMed  Google Scholar 

  42. Dieterle W, Faigle JW, Montigel C, Sulc M, Theobald W (1977) Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 11(5):367–375

    CAS  PubMed  Google Scholar 

  43. Thijssen HH, Flinois JP, Beaune PH (2000) Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 28(11):1284–1290

    CAS  PubMed  Google Scholar 

  44. Hermans JJ, Thijssen HH (1991) Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4’-nitrowarfarin (acenocoumarol). Xenobiotica 21(3):295–307

    CAS  PubMed  Google Scholar 

  45. Toon S, Heimark LD, Trager WF, O'Reilly RA (1985) Metabolic fate of phenprocoumon in humans. J Pharm Sci 74(10):1037–1040

    CAS  PubMed  Google Scholar 

  46. He M, Korzekwa KR, Jones JP, Rettie AE, Trager WF (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 372(1):16–28. doi:10.1006/abbi.1999.1468

    CAS  PubMed  Google Scholar 

  47. Jahnchen E, Meinertz T, Gilfrich HJ, Groth U, Martini A (1976) The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 20(3):342–349

    CAS  PubMed  Google Scholar 

  48. Dalen JE (2012) Prevention of embolic strokes: the role of the American college of chest physicians. Chest 141(2):294–299. doi:10.1378/chest.11-2641

    PubMed  Google Scholar 

  49. ACCP-NHLBI National Conference on Antithrombotic Therapy. American College of Chest Physicians and the National Heart, Lung and Blood Institute (1986). Chest Feb;89(2 Suppl):1S–106S

    Google Scholar 

  50. Federation of Dutch anticoagulation clinics. Samenvatting medische jaarverslagen 2010. http://www.trombosestichting.nl/media/pagecontent/documents/jaarverslagen/Jaarverslag_Trombosestichting_2010.pdf

  51. Cannegieter SC, Rosendaal FR, Wintzen AR, van der Meer FJ, Vandenbroucke JP, Briet E (1995) Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med 333(1):11–17. doi:10.1056/NEJM199507063330103

    CAS  PubMed  Google Scholar 

  52. Chiquette E, Amato MG, Bussey HI (1998) Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med 158(15):1641–1647

    CAS  PubMed  Google Scholar 

  53. van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ (2006) Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest 129(5):1155–1166

    PubMed  Google Scholar 

  54. Verhoef TI, Redekop WK, van Schie RM, Bayat S, Daly AK, Geitona M, Haschke-Becher E, Hughes DA, Kamali F, Levin LA, Manolopoulos VG, Pirmohamed M, Siebert U, Stingl JC, Wadelius M, de Boer A, Maitland-van der Zee AH (2012) Cost-effectiveness of pharmacogenetics in anticoagulation: international differences in healthcare systems and costs. Pharmacogenomics 13(12):1405–1417. doi:10.2217/pgs.12.124

    CAS  PubMed  Google Scholar 

  55. Gurwitz JH, Avorn J, Ross-Degnan D, Choodnovskiy I, Ansell J (1992) Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 116(11):901–904

    CAS  PubMed  Google Scholar 

  56. Demirkan K, Stephens MA, Newman KP, Self TH (2000) Response to warfarin and other oral anticoagulants: effects of disease states. South Med J 93(5):448–454; quiz 455

    CAS  PubMed  Google Scholar 

  57. Commissie SMedischHvandeFvanNTrombosediensten (2010) De kunst van het doseren. Richtlijn, leidraad en informatie voor het doseren van vitamine K-antagonisten. Voorschoten: Federatie van Nederlandse Trombosediensten

    Google Scholar 

  58. Visser LE, Bleumink GS, Trienekens PH, Vulto AG, Hofman A, Stricker BH (2004) The risk of overanticoagulation in patients with heart failure on coumarin anticoagulants. Br J Haematol 127(1):85–89. doi:10.1111/j.1365-2141.2004.05162.x

    CAS  PubMed  Google Scholar 

  59. Schalekamp T, Klungel OH, Souverein PC, de Boer A (2008) Effect of oral antiplatelet agents on major bleeding in users of coumarins. Thromb Haemost 100(6):1076–1083.

    CAS  PubMed  Google Scholar 

  60. Verhoef TI, Zuurhout MJ, van Schie RM, Redekop WK, van der Meer FJ, le Cessie S, Schalekamp T, de Boer A, Maitland-van der Zee AH (2012) The effect of omeprazole and esomeprazole on the maintenance dose of phenprocoumon. Br J Clin Pharmacol 74(6):1068–1069. doi:10.1111/j.1365-2125.2012.04295.x

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Teichert M, van Noord C, Uitterlinden AG, Hofman A, Buhre PN, De Smet PA, Straus S, Stricker BH, Visser LE (2011) Proton pump inhibitors and the risk of overanticoagulation during acenocoumarol maintenance treatment. Br J Haematol 153(3):379–385. doi:10.1111/j.1365-2141.2011.08633.x

    PubMed  Google Scholar 

  62. Howard PA, Ellerbeck EF, Engelman KK, Patterson KL (2002) The nature and frequency of potential warfarin drug interactions that increase the risk of bleeding in patients with atrial fibrillation. Pharmacoepidemiol Drug Saf 11(7):569–576. doi:10.1002/pds.748

    CAS  PubMed  Google Scholar 

  63. Federatie van Nederlandse Trombosediensten, Wetenschappelijk Instituut Nederlandse Apothekers. http://www.fnt.nl/behandeling/cumarine-interacties.html

  64. Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003(3):221–230

    Google Scholar 

  65. Franco V, Polanczyk CA, Clausell N, Rohde LE (2004) Role of dietary vitamin K intake in chronic oral anticoagulation: prospective evidence from observational and randomized protocols. Am J Med 116(10):651–656. doi:10.1016/j.amjmed.2003.12.036

    CAS  PubMed  Google Scholar 

  66. Sconce E, Khan T, Mason J, Noble F, Wynne H, Kamali F (2005) Patients with unstable control have a poorer dietary intake of vitamin K compared to patients with stable control of anticoagulation. Thromb Haemost 93(5):872–875

    CAS  PubMed  Google Scholar 

  67. Reese AM, Farnett LE, Lyons RM, Patel B, Morgan L, Bussey HI (2005) Low-dose vitamin K to augment anticoagulation control. Pharmacotherapy 25(12):1746–1751. doi:10.1592/phco.2005.25.12.1746

    CAS  PubMed  Google Scholar 

  68. Rombouts EK, Rosendaal FR, Van Der Meer FJ (2007) Daily vitamin K supplementation improves anticoagulant stability. J Thromb Haemost 5(10):2043–2048

    CAS  PubMed  Google Scholar 

  69. Dickerson RN (2008) Warfarin resistance and enteral tube feeding: a vitamin K-independent interaction. Nutrition 24(10):1048–1052. doi:10.1016/j.nut.2008.05.015

    CAS  PubMed  Google Scholar 

  70. van der Meer FJ, Briet E, Vandenbroucke JP, Sramek DI, Versluijs MH, Rosendaal FR (1997) The role of compliance as a cause of instability in oral anticoagulant therapy. Br J Haematol 98(4):893–900

    PubMed  Google Scholar 

  71. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, Gonzalez FJ, Trager WF (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5(1):54–59

    CAS  PubMed  Google Scholar 

  72. Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR (1995) Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5(6):389–392

    CAS  PubMed  Google Scholar 

  73. Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, Egberts AC, de Boer A (2007) VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 81(2):185–193

    CAS  PubMed  Google Scholar 

  74. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D, Deloukas P (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5(4):262–270

    CAS  PubMed  Google Scholar 

  75. Schalekamp T, Brasse BP, Roijers JF, Chahid Y, van Geest-Daalderop JH, de Vries-Goldschmeding H, van Wijk EM, Egberts AC, de Boer A (2006) VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 80(1):13–22

    CAS  PubMed  Google Scholar 

  76. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764. doi:10.1056/NEJMoa0809329

    CAS  PubMed  Google Scholar 

  77. Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, Baird MF, Acton RT (2008) Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 83(2):312–321

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, Breskvar K, Dolzan V (2005) Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 5(3):193–202

    CAS  PubMed  Google Scholar 

  79. Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54(10):1257–1270.

    CAS  PubMed  Google Scholar 

  80. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331. doi:10.1038/clpt.2008.10

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, Caldwell MD, Limdi N, Burmester JK, Dowd MB, Angchaisuksiri P, Bass AR, Chen J, Eriksson N, Rane A, Lindh JD, Carlquist JF, Horne BD, Grice G, Milligan PE, Eby C, Shin J, Kim H, Kurnik D, Stein CM, McMillin G, Pendleton RC, Berg RL, Deloukas P, Gage BF (2010) Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther 87(5):572–578. doi:10.1038/clpt.2010.13

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333

    CAS  PubMed  Google Scholar 

  83. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, Holm L, McGinnis R, Rane A, Deloukas P (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792. doi:10.1182/blood-2008-04-149070

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Markatos CN, Grouzi E, Politou M, Gialeraki A, Merkouri E, Panagou I, Spiliotopoulou I, Travlou A (2008) VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics 9(11):1631–1638. doi:10.2217/14622416.9.11.1631

    CAS  PubMed  Google Scholar 

  85. Geisen C, Luxembourg B, Watzka M, Toennes SW, Sittinger K, Marinova M, von Ahsen N, Lindhoff-Last E, Seifried E, Oldenburg J (2011) Prediction of phenprocoumon maintenance dose and phenprocoumon plasma concentration by genetic and non-genetic parameters. Eur J Clin Pharmacol 67(4):371–381. doi:10.1007/s00228-010-0950-y

    CAS  PubMed Central  PubMed  Google Scholar 

  86. D'Andrea G, D'Ambrosio RL, Perna P D, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649. doi:10.1182/blood-2004-06-2111

    PubMed  Google Scholar 

  87. Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C, Jaillon P, Beaune P, Laurent-Puig P, Becquemont L, Loriot MA (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106(1):135–140

    CAS  PubMed  Google Scholar 

  88. Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112(4):1013–1021. doi:10.1182/blood-2008-03-144899

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ (2010) Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115(18):3827–3834. doi:10.1182/blood-2009-12-255992

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G (2004) Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 60(3):173–182. doi:10.1007/s00228-004-0740-5

    CAS  PubMed  Google Scholar 

  91. Teichert M, Eijgelsheim M, Uitterlinden AG, Buhre PN, Hofman A, De Smet PA, Visser LE, Stricker BH (2011) Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes. Pharmacogenet Genomics 21(1):26–34. doi:10.1097/FPC.0b013e32834154fb

    CAS  PubMed  Google Scholar 

  92. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Zhang K Q, Berg RL, Burmester JK (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111(8):4106–4112. doi:10.1182/blood-2007-11-122010

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, Ritchie MD, Stein CM, Roden DM, Smith JD, Veenstra DL, Rettie AE, Rieder MJ (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112(4):1022–1027. doi:10.1182/blood-2008-01-134247

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5(3):e1000433. doi:10.1371/journal.pgen.1000433

    PubMed Central  PubMed  Google Scholar 

  95. Pautas E, Moreau C, Gouin-Thibault I, Golmard JL, Mahe I, Legendre C, Taillandier-Heriche E, Durand-Gasselin B, Houllier AM, Verrier P, Beaune P, Loriot MA, Siguret V (2010) Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87(1):57–64. doi:10.1038/clpt.2009.178

    CAS  PubMed  Google Scholar 

  96. Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, Vicente V, Gonzalez-Conejero R (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 113(20):4977–4979. doi:10.1182/blood-2008-09-176222

    CAS  PubMed  Google Scholar 

  97. Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A, De Smet PA, van Gelder T, Visser LE, Stricker BH (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18(19):3758–3768. doi:10.1093/hmg/ddp309

    CAS  PubMed  Google Scholar 

  98. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T (2007) Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 120(2):181–186

    CAS  PubMed  Google Scholar 

  99. Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V (2006) The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 95(5):782–787

    CAS  PubMed  Google Scholar 

  100. Loebstein R, Vecsler M, Kurnik D, Austerweil N, Gak E, Halkin H, Almog S (2005) Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 77(5):365–372

    CAS  PubMed  Google Scholar 

  101. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA (2006) Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther 79(4):291–302

    CAS  PubMed  Google Scholar 

  102. Luxembourg B, Schneider K, Sittinger K, Toennes SW, Seifried E, Lindhoff-Last E, Oldenburg J, Geisen C (2011) Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost 105(1):169–180. doi:10.1160/TH10-03-0194

    CAS  PubMed  Google Scholar 

  103. Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C, Bentley D, McGinnis R, Deloukas P (2007) Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 121(1):23–34. doi:10.1007/s00439-006-0260-8

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Visser LE, Trienekens PH, De Smet PA, Vulto AG, Hofman A, van Duijn CM, Stricker BH (2005) Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 15(2):69–74

    CAS  PubMed  Google Scholar 

  105. Kimmel SE, Christie J, Kealey C, Chen Z, Price M, Thorn CF, Brensinger CM, Newcomb CW, Whitehead AS (2008) Apolipoprotein E genotype and warfarin dosing among Caucasians and African Americans. Pharmacogenomics J 8(1):53–60

    CAS  PubMed  Google Scholar 

  106. Kohnke H, Scordo MG, Pengo V, Padrini R, Wadelius M (2005) Apolipoprotein E (APOE) and warfarin dosing in an Italian population. Eur J Clin Pharmacol 61(10):781–783. doi:10.1007/s00228-005-0982-x

    PubMed  Google Scholar 

  107. Sconce EA, Daly AK, Khan TI, Wynne HA, Kamali F (2006) APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 16(8):609–611. doi:10.1097/01.fpc.0000220567.98089.b5

    CAS  PubMed  Google Scholar 

  108. Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ (2010) Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 55(9):582–589. doi:10.1038/jhg.2010.73

    CAS  PubMed  Google Scholar 

  109. Becquemont L (2008) Evidence for a pharmacogenetic adapted dose of oral anticoagulant in routine medical practice. Eur J Clin Pharmacol 64(10):953–960. doi:10.1007/s00228-008-0542-2

    PubMed  Google Scholar 

  110. Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, Glurich I, Berg RL, Schmelzer J, Burmester JK (2005) A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 3(3):137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Caraco Y, Blotnick S, Muszkat M (2008) CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 83(3):460–470

    CAS  PubMed  Google Scholar 

  112. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB, Carlquist JF (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116(22):2563–2570

    CAS  PubMed  Google Scholar 

  113. Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, Huang ZH, He Y, Chen KM, Xiang DK, Zou XM, Li Q, Ma LQ, Wang HF, Chen BL, Li L, Jia YK, Xu XM (2009) Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 19(3):226–234. doi:10.1097/FPC.0b013e328326e0c7

    CAS  PubMed  Google Scholar 

  114. Wang M, Lang X, Cui S, Fei K, Zou L, Cao J, Wang L, Zhang S, Wu X, Wang Y, Ji Q (2012) Clinical application of pharmacogenetic-based warfarin-dosing algorithm in patients of Han nationality after rheumatic valve replacement: a randomized and controlled trial. Int J Med Sci 9(6):472–479. doi:10.7150/ijms.4637

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Burmester JK, Berg RL, Yale SH, Rottscheit CM, Glurich IE, Schmelzer JR, Caldwell MD (2011) A randomized controlled trial of genotype-based Coumadin initiation. Genet Med 13(6):509–518. doi:10.1097/GIM.0b013e31820ad77d

    CAS  PubMed  Google Scholar 

  116. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, Robinson M, Barton S, Brunisholz K, Mower CP, Huntinghouse JA, Rollo JS, Siler D, Bair TL, Knight S, Muhlestein JB, Carlquist JF (2012) A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125(16):1997–2005. doi:10.1161/CIRCULATIONAHA.111.070920

    CAS  PubMed  Google Scholar 

  117. van Schie RM, Wadelius MI, Kamali F, Daly AK, Manolopoulos VG, de Boer A, Barallon R, Verhoef TI, Kirchheiner J, Haschke-Becher E, Briz M, Rosendaal FR, Redekop WK, Pirmohamed M, Maitland van der Zee AH (2009) Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 10(10):1687–1695. doi:10.2217/pgs.09.125

    PubMed  Google Scholar 

  118. Baranova EV, Verhoef TI, Asselbergs FW, de Boer A, Maitland-van der Zee AH. Genotype-guided coumarin dosing: where are we now and where do we need to go next? Expert Opin Drug Metab Toxicol 2015(11):509–522

    PubMed Central  PubMed  Google Scholar 

  119. French B, Joo J, Geller NL, Kimmel SE, Rosenberg Y, Anderson JL, Gage BF, Johnson JA, Ellenberg JH (2010) Statistical design of personalized medicine interventions: the clarification of optimal anticoagulation through genetics (COAG) trial. Trials 11:108. doi:10.1186/1745-6215-11-108

    PubMed Central  PubMed  Google Scholar 

  120. Higashi MK, Veenstra DL (2003) Managed care in the genomics era: assessing the cost effectiveness of genetic tests. Am J Manag Care 9(7):493–500

    PubMed  Google Scholar 

  121. You JH, Chan FW, Wong RS, Cheng G (2004) The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy - a decision analysis. Thromb Haemost 92(3):590–597. doi:10.1267/THRO04090000

    CAS  PubMed  Google Scholar 

  122. Schalekamp T, Boink GJ, Visser LE, Stricker BH, de Boer A, Klungel OH (2006) CYP2C9 genotyping in acenocoumarol treatment: is it a cost-effective addition to international normalized ratio monitoring? Clin Pharmacol Ther 79(6):511–520

    CAS  PubMed  Google Scholar 

  123. You JH, Tsui KK, Wong RS, Cheng G (2009) Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy. Clin Pharmacol Ther 86(5):540–547. doi:10.1038/clpt.2009.104

    CAS  PubMed  Google Scholar 

  124. Eckman MH, Rosand J, Greenberg SM, Gage BF (2009) Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 150(2):73–83

    PubMed  Google Scholar 

  125. Leey JA, McCabe S, Koch JA, Miles TP (2009) Cost-effectiveness of genotype-guided warfarin therapy for anticoagulation in elderly patients with atrial fibrillation. Am J Geriatr Pharmacother 7(4):197–203. doi:10.1016/j.amjopharm.2009.07.002

    PubMed  Google Scholar 

  126. Patrick AR, Avorn J, Choudhry NK (2009) Cost-effectiveness of genotype-guided warfarin dosing for patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes 2(5):429–436. doi:10.1161/CIRCOUTCOMES.108.808592

    PubMed  Google Scholar 

  127. Meckley LM, Gudgeon JM, Anderson JL, Williams MS, Veenstra DL (2010) A policy model to evaluate the benefits, risks and costs of warfarin pharmacogenomic testing. Pharmacoeconomics 28(1):61–74. doi:10.2165/11318240-000000000-00000

    PubMed  Google Scholar 

  128. Shiroiwa T, Sung YK, Fukuda T, Lang HC, Bae SC, Tsutani K (2010) International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? Health Econ 19(4):422–437. doi:10.1002/hec.1481

    PubMed  Google Scholar 

  129. Verhoef TI, Redekop WK, Veenstra DL, Thariani R, Beltman PA, van Schie RM, de Boer A, Maitland-van der Zee AH (2013) Cost-effectiveness of pharmacogenetic-guided dosing of phenprocoumon in atrial fibrillation. Pharmacogenomics 14(8):869–883. doi:10.2217/pgs.13.74

    CAS  PubMed  Google Scholar 

  130. Dogliotti A, Paolasso E, Giugliano RP (2013) Novel oral anticoagulants in atrial fibrillation: a meta-analysis of large, randomized, controlled trials vs warfarin. Clin Cardiol 36(2):61–67. doi:10.1002/clc.22081

    PubMed  Google Scholar 

  131. You JH, Tsui KK, Wong RS, Cheng G (2012) Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLoS ONE 7(6):e39640. doi:10.1371/journal.pone.0039640

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Verhoef TI, Redekop WK, Darba J, Geitona M, Hughes DA, Siebert U, de Boer A, Maitland-van der Zee AH, Barallon R, Briz M, Daly A, Haschke-Becher E, Kamali F, Kirchheiner J, Manolopoulos VG, Pirmohamed M, Rosendaal FR, van Schie RM, Wadelius M (2010) A systematic review of cost-effectiveness analyses of pharmacogenetic-guided dosing in treatment with coumarin derivatives. Pharmacogenomics 11(7):989–1002. doi:10.2217/pgs.10.74

    CAS  PubMed  Google Scholar 

  133. Howard R, Leathart JB, French DJ, Krishan E, Kohnke H, Wadelius M, van Schie R, Verhoef T, Maitland-van der Zee AH, Daly AK, Barallon R (2011) Genotyping for CYP2C9 and VKORC1 alleles by a novel point of care assay with HyBeacon(R) probes. Clin Chim Acta 412(23–24):2063–2069. doi:10.1016/j.cca.2011.07.013

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke-Hilse Maitland-van der Zee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Schie, R. et al. (2015). Pharmacogenetics of Coumarin Anticoagulant Therapy. In: Grech, G., Grossman, I. (eds) Preventive and Predictive Genetics: Towards Personalised Medicine. Advances in Predictive, Preventive and Personalised Medicine, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-15344-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15344-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15343-8

  • Online ISBN: 978-3-319-15344-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics