Skip to main content

Critical Care in Acute Care Surgery

  • Chapter
  • First Online:
Acute Care Surgery Handbook

Abstract

Trauma, acute care surgery, and critical care have been interlinked for over a century. The field of critical care arose during the Crimean War of the 1850s, when Florence Nightingale dedicated a separate treatment area to the most severely wounded soldiers [1]. Although anesthesiologists, pulmonologists, and emergency medicine physicians also staff intensive care units (ICUs), mastery of critical care principles remains fundamental to an acute care surgeon’s practice. As a single chapter cannot accommodate the breadth of the critical care literature, we focus here on content most relevant to the acute care surgeon: resuscitation and respiratory support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weil MH, Tang W. From intensive care to critical care medicine: a historical perspective. Am J Respir Crit Care Med. 2011;183(11):1451–3.

    Article  PubMed  Google Scholar 

  2. Ashbaugh DG, Bigelow DB, Pett TL, et al. Acute reespiratory distress in adults. Lancet. 1967;2:319–23.

    Article  CAS  PubMed  Google Scholar 

  3. Demling RH. The pathogenesis of respiratory failure after trauma and sepsis. Surg Clin North Am. 1980;60:1373–90.

    Article  CAS  PubMed  Google Scholar 

  4. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.

    Article  CAS  PubMed  Google Scholar 

  5. Maxwell RA, Fabian TC, Croce MA, et al. Secondary abdominal compartment syndrome: an underappreciated manifestation of severe hemorrhagic shock. J Trauma. 1999;47:995–9.

    Article  CAS  PubMed  Google Scholar 

  6. Madigan M, Kemp CD, Johnson JC, et al. Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame? J Trauma. 2008;64:280–5.

    Article  PubMed  Google Scholar 

  7. Hashim R, Frankel H, Tandon M, et al. Fluid resuscitation-induced cardiac tamponade. J Trauma. 2002;53:1183–4.

    Article  PubMed  Google Scholar 

  8. Cotton BA, Guy JS, Morris JA, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.

    Article  CAS  PubMed  Google Scholar 

  9. Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  PubMed  Google Scholar 

  10. Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.

    Article  PubMed  Google Scholar 

  11. Michard F, Boussard S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  12. Marik P, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  13. Zhang Z, Lu B, Sheng X, et al. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth. 2011;25(6):904–16.

    Article  PubMed  Google Scholar 

  14. Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8.

    Article  PubMed  Google Scholar 

  15. Belloni L, Pisano A, Natale A, et al. Assessment of fluid-responsiveness parameters for off-pump coronary artery bypass surgery: a comparison among LiDCO, transesophageal echocardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2008;22(2):243–8.

    Article  PubMed  Google Scholar 

  16. Barbier C, Jardin F, Vieillard-Baron A. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30:1740–6.

    PubMed  Google Scholar 

  17. Feissel M, Michard F, Faller JP, et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.

    Article  PubMed  Google Scholar 

  18. Dipit A, Soucy Z, Surana A, et al. Role of inferior vena cava diameter in assessment of volume status: a meta-analysis. Am J Emerg Med. 2012;30(8):1414–9.

    Article  Google Scholar 

  19. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.

    Article  PubMed  Google Scholar 

  20. Walley PE, Walley KR, Goodgame B, et al. A practical approach to goal-directed echocardiography in the critical care setting. Crit Care. 2014;18:681–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilcox J, Elmer SR, Raja A. Massive tranfusion in traumatic shock. J Emerg Med. 2013;44(4):829–38.

    Article  PubMed  Google Scholar 

  22. Holcomb JB, Tilley BC, Baranuik S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schöchl H, Voelckel W, Grassetto A, Schlimp CJ. Practical application of point-of-care coagulation testing to guide treatment decisions in trauma. J Trauma Acute Care Surg. 2013;74(6):1587–98.

    Article  PubMed  Google Scholar 

  24. Holcomb JB, Minei KM, Scerbo ML, et al. Admission rapid thromboelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86.

    Article  PubMed  Google Scholar 

  25. Johansson PI. Coagulation monitoring of the bleeding traumatized patient. Curr Opin Anaesthesiol. 2012;25(2):235–41.

    Article  PubMed  Google Scholar 

  26. Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  PubMed  Google Scholar 

  27. Hauser CJ, Boffard KD, Dutton R, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010;69(3):489–500.

    Article  CAS  PubMed  Google Scholar 

  28. Rizoli SB, Boffard KD, Riou B, et al. Recombinant factor VIIa as adjunctive therapy for bleeding control in severe trauma patients with coagulopathy: subgroup analysis from two randomized trials. Crit Care. 2006;10:R178.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2012;14(3):CD005011.

    Google Scholar 

  30. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    Article  PubMed  Google Scholar 

  31. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–9.

    Google Scholar 

  32. Lee JM, Bae W, Lee YJ, et al. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome: an updated study-level meta-analysis of 11 randomized controlled trials. Crit Care Med. 2014;42:1252–62.

    Article  PubMed  Google Scholar 

  33. Papazian L, Forel JM, Gacoin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.

    Article  CAS  PubMed  Google Scholar 

  34. Ferrer M, Torres A. Noninvasive ventilation for acute respiratory failure. Curr Opin Crit Care. 2015;21:1–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn L. Butler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butler, K.L., Velmahos, G. (2017). Critical Care in Acute Care Surgery. In: Di Saverio, S., Catena, F., Ansaloni, L., Coccolini, F., Velmahos, G. (eds) Acute Care Surgery Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-15341-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15341-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15340-7

  • Online ISBN: 978-3-319-15341-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics