Skip to main content

Axisymmetric Problems in Cylindrical Coordinates

  • Chapter
  • First Online:
  • 1190 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 219))

Abstract

Problems of fractional thermoelasticty based on the time-fractional heat conduction equation are considered in cylindrical coordinates. Heat conduction in a long cylinder, in an infinite solid with a long cylindrical cavity and in a half-space is investigated. The solutions to the fractional heat conduction equation under the Dirichlet boundary condition with the prescribed boundary value of temperature and the physical Neumann boundary condition with the prescribed boundary value of the heat flux are obtained. Different kinds of integral transforms (Laplace, Fourier and Hankel) are used. Associated thermal stresses are investigated. The representations of stresses in terms of the displacement potential and the biharmonic Love function allows us to satisfy the prescribed boundary condition for the stress tensor.

In order to solve a differential equation you

look at it till a solution occurs to you. George Pólya

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)

    Google Scholar 

  2. Galitsyn, A.S., Zhukovsky, A.N.: Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976) (in Russian)

    Google Scholar 

  3. Nowacki, W.: Thermoelasticity, 2nd edn. PWN-Polish Scientific Publishers, Warsaw and Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  4. Parkus, H.: Instationäre Wärmespannungen. Springer, Wien (1959)

    Book  MATH  Google Scholar 

  5. Podstrigach, Ya.S., Povstenko, Y.Z.: Introduction to Mechanics of Surface Phenomena in Deformable Solids. Naukova Dumka, Kiev (1985) (in Russian)

    Google Scholar 

  6. Povstenko, Y.: Fractional heat conduction equation and associated thermal stresses. J. Therm. Stress. 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  7. Povstenko, Y.: Thermoelasticity which uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)

    Article  MathSciNet  Google Scholar 

  8. Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)

    Article  MATH  Google Scholar 

  9. Povstenko, Y.: Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, 418–435 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Povstenko, Y.Z.: Solutions to time-fractional diffusion-wave equation in cylindrical coordinates. Adv. Differ. Equ. 2011, 930297-1-14 (2011)

    Google Scholar 

  11. Povstenko, Y.Z.: Non-axisymmetric solutions to time-fractional heat conduction equation in a half-space in cylindrical coordinates. Math. Methods Phys.-Mech. Fields 54(1), 212–219 (2011)

    Google Scholar 

  12. Povstenko, Y.: Different formulations of Neumann boundary-value problem for time-fractional heat conduction equation in a half-space. In: Proceedings of the 9th International Congress on Thermal Stresses, Budapest, Hungary, 5–9 June 2011

    Google Scholar 

  13. Povstenko, Y.: Axisymmetric solutions to time fractional heat conduction equation in a half-space under Robin boundary conditions. Int. J. Differ. Equ. 2012, 154085-1-13 (2012)

    Google Scholar 

  14. Povstenko, Y.: Fractional thermoelasticity. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, vol. 4, pp. 1778–1787. Springer, New York (2014)

    Chapter  Google Scholar 

  15. Povstenko, Y.: Axisymmetric thermal stresses in a half-space in the framework of fractional thermoelasticity. Sci. Issues Jan Dlugosz Univ. Czestochowa, Math. 19, 207–216 (2014)

    Google Scholar 

  16. Povstenko, Y.: Axisymmetric solution to time-fractional heat conduction equation in an infinite cylinder under local heating and associated thermal stresses. Int. J. Mech. 8, 383–390 (2014)

    Google Scholar 

  17. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Volume 1: Elementary Functions. Gordon and Breach, Amsterdam (1986)

    Google Scholar 

  18. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series. Volume 2: Special Functions. Gordon and Breach, Amsterdam (1986)

    Google Scholar 

  19. Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  20. Titchmarsh, E.C.: Eigenfunction Expansion Associated with Second-Order Differential Equations. Clarendon Press, Oxford (1946)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko .

Appendix: Integrals

Appendix: Integrals

Integrals containing elementary functions are taken from [17], integrals (4.216) and (4.217) containing Bessel function are taken from [18], integrals (4.212) and (4.214) are presented in [1]; integrals (4.202), (4.213) and (4.215) have been evaluated by the author.

$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{x^{2}+ c^{2}}\, \text {e}^{-a^{2}x^{2}} \text {d}x = \frac{\pi }{2c} \, \text {e}^{a^{2}x^{2}} \text {erfc}\,(ac) \end{aligned}$$
(4.201)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{(x^{2}+ c^{2})^{2}}\, \text {e}^{-a^{2}x^{2}} \text {d}x = \frac{\pi }{4c^{3}} \, \text {e}^{a^{2}c^{2}} \bigg [ \left( 1-2a^{2}c^{2} \right) \text {erfc} \left( ac \right) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad + \frac{2ac}{\sqrt{\pi }}\, \exp \left( -a^{2}c^{2} \right) \bigg ] \end{aligned}$$
(4.202)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{x^{2}+ c^{2}}\, \sin (bx)\, \text {d}x = \frac{\pi }{2} \, \text {e}^{- bc} \end{aligned}$$
(4.203)
$$\begin{aligned}&\int _{0}^{\infty } \frac{ 1}{x(x^{2}+c^{2})} \, \sin (bx) \, \text {d}x = \frac{\pi }{2c^{2}} \left( 1 - \text {e}^{- bc} \right) \end{aligned}$$
(4.204)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{(x^{2}+ c^{2})^{2}}\, \sin (bx)\, \text {d}x = \frac{\pi b}{4c} \, \text {e}^{- bc} \end{aligned}$$
(4.205)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{x^{2}+ c^{2}}\, \cos (bx)\, \text {d}x = \frac{\pi }{2c} \, \text {e}^{-bc} \end{aligned}$$
(4.206)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{(x^{2}+ c^{2})^{2}}\, \cos (bx)\, \text {d}x = \frac{\pi (1+bc)}{4c^{3}} \, \text {e}^{-bc} \end{aligned}$$
(4.207)
$$\begin{aligned}&\int _{0}^{\infty } x \, \text {e}^{-a^{2}x^{2}}\, \sin (bx) \, \text {d}x = \frac{\sqrt{\pi }b}{4a^{3}} \ \exp \left( - \frac{b^{2}}{4a^{2}} \right) \end{aligned}$$
(4.208)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{x} \, \text {e}^{-a^{2}x^{2}}\, \sin (bx )\, \text {d}x = \frac{\pi }{2} \ \text {erf} \left( \frac{b}{2a} \right) \end{aligned}$$
(4.209)
$$\begin{aligned}&\int _{0}^{\infty } \text {e}^{- a^{2}x^{2}}\, \cos (bx) \, \text {d}x = \frac{\sqrt{\pi }}{2a} \ \exp \left( - \frac{b^{2}}{4a^{2}} \right) \end{aligned}$$
(4.210)
$$\begin{aligned}&\int _{0}^{\infty } x^{2} \, \text {e}^{-a ^{2}x^{2}} \cos ( bx) \, \text {d}x = \frac{\sqrt{\pi }}{4a^{3}} \left( 1- \frac{b^{2}}{2a^{2}} \right) \, \exp \left( - \frac{b^{2}}{4a^{2}} \right) \end{aligned}$$
(4.211)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{x^{2}+ c^{2}}\, \text {e}^{-a^{2}x^{2}}\, \sin bx\, \text {d}x = \frac{\pi }{4} \, \text {e}^{a^{2}c^{2}} \bigg [ \text {e}^{-bc} \text {erfc} \left( ac - \frac{b}{2a} \right) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad - \, \text {e}^{bc} \text {erfc} \left( ac + \frac{b}{2a} \right) \bigg ] \end{aligned}$$
(4.212)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{(x^{2}+ c^{2})^{2}}\, \text {e}^{-a^{2}x^{2}}\, \sin \left( bx \right) \, \text {d}x = \frac{\pi }{8c} \, \text {e}^{a^{2}c^{2}} \bigg [ \left( b-2a^{2}c \right) \text {e}^{-bc} \text {erfc} \left( ac - \frac{b}{2a} \right) \nonumber \\&\qquad \qquad +\left( b+2a^{2}c \right) \text {e}^{bc} \text {erfc} \left( ac + \frac{b}{2a} \right) \bigg ] \end{aligned}$$
(4.213)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{x^{2}+ c^{2}}\, \text {e}^{-a^{2}x^{2}}\, \cos bx\, \text {d}x = \frac{\pi }{4c} \, \text {e}^{a^{2}c^{2}} \bigg [ \text {e}^{-bc} \text {erfc} \left( ac - \frac{b}{2a} \right) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad + \, \text {e}^{bc} \text {erfc} \left( ac + \frac{b}{2a} \right) \bigg ] \end{aligned}$$
(4.214)
$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{(x^{2}+ c^{2})^{2}}\, \text {e}^{-a^{2}x^{2}}\, \cos \left( bx \right) \, \text {d}x = \frac{\pi }{8c^{3}} \, \text {e}^{a^{2}c^{2}} \bigg [ \frac{4ac}{\sqrt{\pi }}\, \exp \left( -a^{2}c^{2} - \frac{b^{2}}{4a^{2}} \right) \nonumber \\&\qquad \qquad + \left( 1+bc-2a^{2}c^{2} \right) \text {e}^{-bc} \text {erfc} \left( ac - \frac{b}{2a} \right) \nonumber \\&\qquad \qquad + \left( 1-bc-2a^{2}c^{2} \right) \text {e}^{bc} \text {erfc} \left( ac + \frac{b}{2a} \right) \bigg ] \end{aligned}$$
(4.215)
$$\begin{aligned}&\int _{0}^{a} x \, \sin \left( b\sqrt{a^{2}-x^{2}}\right) J_{0} (cx) \, \text {d}x \nonumber \\&\qquad \qquad = \frac{ab}{b^{2}+c^{2}} \left[ \frac{\sin \left( a\sqrt{b^{2}+c^{2}}\right) }{a\sqrt{b^{2}+c^{2}}} - \cos \left( a \sqrt{b^{2}+c^{2}}\right) \right] \end{aligned}$$
(4.216)
$$\begin{aligned}&\int _{0}^{a} \frac{x }{\sqrt{a^{2}-x^{2}}} \, \cos \left( b\sqrt{a^{2}-x^{2}}\right) \, J_{0} (cx) \, \text {d}x = \frac{\sin \left( a\sqrt{b^{2}+c^{2}}\right) }{\sqrt{b^{2}+c^{2}}} \end{aligned}$$
(4.217)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Povstenko, Y. (2015). Axisymmetric Problems in Cylindrical Coordinates. In: Fractional Thermoelasticity. Solid Mechanics and Its Applications, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-15335-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15335-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15334-6

  • Online ISBN: 978-3-319-15335-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics