Essentials of Fractional Calculus

  • Yuriy PovstenkoEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 219)


Essentials of fractional calculus are presented. Different kinds of integral and differential operators of fractional order are discussed. The notion of the Riemann-Liouville fractional integral is introduced as a natural generalization of the repeated integral written in a convolution type form. The Riemann-Liouville fractional derivative is defined as left-inverse to the Riemann-Liouville fractional integral. The Caputo fractional derivative and the Riesz fractional operators (including the fractional Laplace operator) are considered. The cumbersome aspects of space-fractional differential operators disappear when one computes their Fourier integral transforms.


Fractional Order Fractional Derivative Fractional Calculus Fractional Differential Equation Fractional Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)Google Scholar
  2. 2.
    Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014)CrossRefGoogle Scholar
  3. 3.
    Bagley, R.L., Torvik, P.J.: Fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baleanu, D., Güvenç, Z.B., Tenreiro Machado, J.A. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)zbMATHGoogle Scholar
  5. 5.
    Carpinteri, A., Cornetti, P.: A fractional calculus approach to the description of stress and strain localization. Chaos, Solitons Fractals 13, 85–94 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Datsko, B., Gafiychuk, V.: Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1673–1680 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gafiychuk, V., Datsko, B.: Mathematical modeling of different types of instabilities in time fractional reaction-diffsion systems. Comput. Math. Appl. 59, 1101–1107 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinetti, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)CrossRefGoogle Scholar
  10. 10.
    Gorenflo, R., Mainardi, F.: Fractional calculus and stable probability distributions. Arch. Mech. 50, 377–388 (1998)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gorenflo, R., Iskenderov, A., Luchko, Yu.: Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, 75–86 (2000)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Herrmann, R.: Fractional Calculus: An Introduction for Physicists, 2nd edn. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  14. 14.
    Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)Google Scholar
  15. 15.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  16. 16.
    Kimmich, R.: Strange kinetics, porous media, and NMR. Chem. Phys. 284, 253–285 (2002)CrossRefGoogle Scholar
  17. 17.
    Leszczyński, J.S.: An Introduction to Fractional Mechanics. The Publishing Office of Czȩstochowa University of Technology, Czȩstochowa (2011)Google Scholar
  18. 18.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Connecticut (2006)Google Scholar
  19. 19.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons Fractals 7, 1461–1477 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mecanics, pp. 291–348. Springer, Wien (1997)CrossRefGoogle Scholar
  21. 21.
    Mainardi, F.: Applications of fractional calculus in mechanics. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, pp. 309–334. Bulgarian Academy of Sciences, Sofia (1998)Google Scholar
  22. 22.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)CrossRefGoogle Scholar
  23. 23.
    Mainardi, F., Gorenflo, R.: On Mittag-Leffer-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)Google Scholar
  24. 24.
    Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  28. 28.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  29. 29.
    Paradisi, P., Cesari, R., Mainardi, F., Maurizi, A., Tampieri, F.: A generalized Fick’s law to describe non-local transport effects. Phys. Chem. Earth (B) 26, 275–279 (2001)Google Scholar
  30. 30.
    Paradisi, P., Cesari, R., Mainardi, F., Tampieri, F.: The fractional Fick’s law for non-local transport processes. Phys. A 293, 130–142 (2001)Google Scholar
  31. 31.
    Pȩkalski, A., Sznajd-Weron, K. (eds.): Anomalous Diffusion: From Basics to Applications. Lecture Notes in Physics, vol. 519. Springer, Berlin (1999)Google Scholar
  32. 32.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  33. 33.
    Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Volume 2: Special Functions. Gordon and Breach, Amsterdam (1986)Google Scholar
  34. 34.
    Rabotnov, Yu.N.: Creep Problems in Structural Members. North-Holland Publishing Company, Amsterdam (1969)Google Scholar
  35. 35.
    Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics. Mir, Moscow (1980)Google Scholar
  36. 36.
    Rossikhin, Yu.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)Google Scholar
  37. 37.
    Rossikhin, Yu.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801-1-25 (2010)Google Scholar
  38. 38.
    Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)Google Scholar
  39. 39.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam (1993)zbMATHGoogle Scholar
  40. 40.
    Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)zbMATHGoogle Scholar
  41. 41.
    Tenreiro Machado, J.: And I say to myself “What a fractional world!”. Fract. Calc. Appl. Anal. 14, 635–654 (2011)Google Scholar
  42. 42.
    Tenreiro Machado, J., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  44. 44.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)CrossRefGoogle Scholar
  45. 45.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractals Operators. Springer, New York (2003)CrossRefGoogle Scholar
  46. 46.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceJan Długosz UniversityCzęstochowaPoland

Personalised recommendations