Skip to main content

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 13))

  • 2152 Accesses

Abstract

Because the grasses are common plants, often ecologically dominant and with nutritious seeds, it is not surprising that they were harvested and later domesticated by the earliest agriculturalists. Archaeological evidence shows that wild grasses were used well before agriculture began (Bettinger et al. 2010; Kislev et al. 1992; Purugganan and Fuller 2009), and only gradually did early hunter-gatherer groups shift to farming. Fuller (2007) suggests a model, modified from Harris (1989), that describes gathering of wild food and cultivation of domesticated plants as end-points of a continuum, with intermediate stages of “semi-domestication” that spread over various lengths of time in various crops (e.g., Tanno and Willcox 2006). In general, this model shows that domestication was a long slow process, occurring over hundreds to thousands of years. As population genetic data have been applied more extensively to the question of domestication, and as more archaeological sites have been investigated, it has also become clear that many domesticated species were domesticated more than once (Weiss et al. 2006). The best studied of the cereals are the so-called Big Three – wheat, rice, and maize – plus barley, all of which have an appreciable archaeological record. However, additional data are accumulating on many other species that are somewhat less important for modern agriculture, but that have been important historically and regionally; these data permit some generalizations about the domestication process as well as the effects of selection on genes and genomes.

“… agriculture [is] something the grasses did to people as a way to conquer the trees.” (Pollan 2001), p. xxi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov, E.D., Akhunova, A.R., Anderson, O.D., Anderson, J.A., Blake, N., Clegg, M.T., Coleman-Derr, D., Conley, E.J., Crossman, C.C., Deal, K.R., Dubcovsky, J., Gill, B.S., Gu, Y.Q., Hadam, J., Heo, H., McGuire, E., Morrell, P.L., Qualset, C.O., Renfro, J., Tabanao, D., Talbert, L.E., Tian, C., Toleno, D.M., Warburton, M., You, F.M., Zhang, W., Dvorak, J. 2010. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11: 702.

    Google Scholar 

  • Artschwager, E., Brandes, E.W. 1958. Sugarcane (Saccharum officinarum L.): origin, classification, characteristics and descriptions of representative clones. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Azhaguvel, P., Komatsuda, T. 2007. A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann. Bot. 100: 1009–1015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bettinger, R.L., Barton, L., Morgan, C. 2010. The origins of food production in North China: a different kind of agricultural revolution. Evol. Anthropol. 19: 9–21.

    Article  Google Scholar 

  • Burger, J.C., Ellstrand, N.C. 2005. Feral rye - evolutionary origins of a weed. In: Gressel, J. (ed.) Crop ferality and volunteerism. Boca Raton, Florida: CRC Press. pp. 175–192

    Chapter  Google Scholar 

  • Clark, R.M., Wagler, T.N., Quijada, P., Doebley, J. 2006. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38: 594–597.

    Article  CAS  PubMed  Google Scholar 

  • Clotault, J., Thuillet, A.-C., Buiron, M., DeMita, S., Couderc, M., Haussmann, B.I.G., Mariac, C., Vigouroux, Y. 2012. Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol. Biol. Evol. 29: 1199–1212.

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea, A.C. 2008. T’ef (Eragrostis tef) in ancient agricultural systems of highland Ethiopia. Econ. Bot. 62: 547–566.

    Article  Google Scholar 

  • Devos, K.M., Costa de Oliveira, A., Xu, X., Estill, J., Estep, M., Jogi, A., Morales, M., Pinheiro, J., SanMiguel, P., Bennetzen, J.L. 2008. Structure and organization of the wheat genome - the number of genes in the hexaploid wheat genome. In: Appels, R., Eastwood, R., Lagudah, E., Langridge, P., Mackay, M., McIntyre, L., Sharp, P. (eds.) Proceedings of the 11th International Wheat Genetics Symposium. Sydney, Australia: Sydney University Press. pp. 1–5

    Google Scholar 

  • Dida, M.M., Wanyera, N., Harrison Dunn, M.L., Bennetzen, J.L., Devos, K.M. 2008. Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trop. Plant Biol. 1: 131–141.

    Article  Google Scholar 

  • Dillon, S.L., Shapter, F.M., Henry, R.J., Cordeiro, G., Izauierdo, L., Lee, L.S. 2007. Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann. Bot. 100: 975–989.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doebley, J., Stec, A., Hubbard, L. 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Doebley, J.F., Gaut, B.S., Smith, B.D. 2006. The molecular genetics of crop domestication. Cell 127: 1309–1321.

    Article  CAS  PubMed  Google Scholar 

  • Doust, A. 2007. Architectural evolution and its implications for domestication in grasses. Ann. Bot. 100: 941–950.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doust, A.N., Devos, K.M., Gadberry, M., Gale, M.D., Kellogg, E.A. 2004. Genetic control of branching in foxtail millet. Proc. Natl. Acad. Sci. USA 101: 9045–9050.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duvick, D.N. 2001. Biotechnology in the 1930s: the development of hybrid maize. Nature Rev. Genet. 2: 69–64.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, D.Q. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100: 903–924.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gale, M.D., Devos, K.M. 1998. Plant comparative genetics after 10 years. Science 282: 656–659.

    Article  CAS  PubMed  Google Scholar 

  • Ge, W., Liu, L., Chen, X., Jin, Z. 2011. Can noodles be made from millet? An experimental investigation of noodle manufacture together with starch grain analyses. Archaeometry 53: 194–204.

    Article  Google Scholar 

  • Glémin, S., Bataillon, T. 2009. A comparative view of the evolution of grasses under domestication. New Phytol. 183: 273–290.

    Article  PubMed  Google Scholar 

  • Harlan, J.R. 1992. Crops and man. Madison, Wisconsin: American Society of Agronomy and Crop Science Society of America.

    Google Scholar 

  • Harlan, J.R., de Wet, J.M.J., Price, E.G. 1973. Comparative evolution of cereals. Evolution 27: 311–325.

    Article  Google Scholar 

  • Harris, D.R. 1989. An evolutionary continuum of people-plant interaction. In: Harris, D.R., Hillman, G.C. (eds.) Foraging and farming: the evolution of plant exploitation. London: Routledge. pp. 11–26

    Google Scholar 

  • Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C., Hochu, I., Poirier, S., Santoni, S., Glémin, S., David, J. 2007. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24: 1506–1517.

    Article  CAS  PubMed  Google Scholar 

  • Hillman, G.C., Davies, M.S. 1990. Domestication rates in wild-type wheats and barley under primitive cultivation. Biol. J. Linn. Soc. 39: 39–78.

    Article  Google Scholar 

  • Hilu, K.W., de Wet, J.M.J. 1976. Racial evolution in Eleusine coracana ssp. coracana (Finger Millet). Amer. J. Bot. 63: 1311–1318.

    Article  Google Scholar 

  • Hilu, K.W., de Wet, J.M.J., Harlan, J.R. 1979. Archaeobotanical studies of Eleusine coracana ssp. coracana. Amer. J. Bot. 66: 330–333.

    Article  Google Scholar 

  • Huang, X., Kurata, N., Wei, X., Wang, Z.-X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., Guo, Y., Lu, Y., Zhou, C., Fan, D., Weng, Q., Zhu, C., Huang, T., Zhang, L., Wang, Y., Feng, L., Furuumi, H., Kubo, T., Miyabayashi, T., Yuan, X., Xu, Q., Dong, G., Zhan, Q., Li, C., Fujiyama, A., Toyoda, A., Lu, T., Feng, Q., Qian, Q., Li, J., Han, B. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Hufford, M.B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J.-M., Cartwright, R.A., Elshire, R.J., Glaubitz, J.C., Guill, K.E., Kaeppler, S.M., Lai, J., Morrell, P.L., Shannon, L.M., Song, C., Springer, N.M., Swanson-Wagner, R.A., Tiffin, P., Wang, J., Zhang, G., Doebley, J., McMullen, M.D., Ware, D., Buckler, E.S., Yang, S., Ross-Ibarra, J. 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44: 808–811.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, H.V., van der Linden, M., Liu, X., Motuzaite-Matuzeviciute, G., Colledge, S., Jones, M.K. 2008. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veget. Hist. Archaeobot. 17 (suppl.): S5-S18.

    Google Scholar 

  • Ingram, A.L., Doyle, J.J. 2003. The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. Amer. J. Bot. 90: 116–122.

    Article  CAS  Google Scholar 

  • Kaltsikes, P.J., Evans, L.E., Bushuk, W. 1968. Durum-type wheat with high bread-making quality. Science 159: 211–213.

    Article  CAS  PubMed  Google Scholar 

  • Kellogg, E.A. 2009. The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. RICE 2: 1–14.

    Google Scholar 

  • Kerber, E.R., Tipples, K.H. 1969. Effects of the D genome on milling and baking properties of wheat. Can. J. Plant Sci. 49: 255–263.

    Article  Google Scholar 

  • Khush, G.S. 1963. Cytogenetic and evolutionary studies in Secale III. Cytogenetics of weedy ryes and origin of cultivated rye. Econ. Bot. 17: 60–71.

    Article  Google Scholar 

  • Kihara, H. 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. 19: 13–14.

    Google Scholar 

  • Kihara, H. 1982. Wheat studies - retrospect and prospects. Amsterdam: Elsevier.

    Google Scholar 

  • Kihara, H., Lilienfeld, F. 1949. A new synthesized 6x-wheat. Hereditas 35 (S1): 307–319.

    Article  Google Scholar 

  • Kislev, M.E., Nadel, D., Carmi, I. 1992. Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev. Palaeobot. Palynol. 73: 161–166.

    Article  Google Scholar 

  • Klee, M., Zach, B., Neumann, K. 2000. Four thousand years of plant exploitation in the Chad Basin of northeast Nigeria I: the archaeobotany of Kursakata. Veget. Hist. Archaeobot. 9: 223–237.

    Article  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T., Yano, M. 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104: 1424–1429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konishi, S., Izawa, T., Lin, S.Y., Ebana, K., Fukuta, Y., Sasaki, T., Yano, M. 2006. An SNP caused loss of seed shattering during rice domestication. Science 312: 1392–1396.

    Article  CAS  PubMed  Google Scholar 

  • Lebot, V. 1999. Biomolecular evidence for plant domestication in Sahul. Genet. Res. Crop Evol. 46: 619–628.

    Article  Google Scholar 

  • Le Thierry d’Ennequin, M., Panaud, O., Toupance, B., Sarr, A. 2000. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor. Appl. Genet. 100: 1061–1066.

    Google Scholar 

  • Li, W., Gill, B.S. 2006. Multiple genetic pathways for seed shattering in the grasses. Func. Integ. Genomics 6: 300–309.

    Article  CAS  Google Scholar 

  • Li, Y., Wu, S. 1996. Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87: 33–38.

    Article  Google Scholar 

  • Li, C., Zhou, A., Sang, T. 2006. Rice domestication by reducing shattering. Science 311: 1936–1939.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., Zhang, J., Liu, K.-b., Wu, N., Li, Y., Zhou, K., Ye, M., Zhang, T., Zhang, H., Yang, X., Shen, L., Xu, D., Li, Q. 2009a. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 106: 7367–7372.

    Google Scholar 

  • Lu, H., Zhang, J., Wu, N., Liu, K.-b., Xu, D., Li, Q. 2009b. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 4: e4448.

    Google Scholar 

  • Luo, M.-C., Yang, Z.-L., You, F.M., Kawahara, T. 2007. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 114: 947–959.

    Article  PubMed  Google Scholar 

  • Manning, K., Pelling, R., Higham, T., Schwenniger, J.-L., Fuller, D.Q. 2011. 4500-year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: new insights into an alternative cereal domestication pathway. J. Archaeol. Sci. 38: 312–322.

    Google Scholar 

  • Mariac, C., Robert, T., Allinne, C., Remigereau, M.S., Luxereau, A., Tidjani, M., Seyni, O., Bezancon, G., Pham, J.L., Sarr, A. 2006. Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theor. Appl. Genet. 113: 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, Y. 2011. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52: 750–764.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez G., J., Buckler, E., Doebley, J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 99: 6080–6084.

    Google Scholar 

  • McFadden, E.S., Sears, E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81–89.

    PubMed  Google Scholar 

  • Molina, J., Sikora, M., Garud, N., Flowers, J.M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B.A., Bustamente, C.D., Boyko, A.R., Purugganan, M.D. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. USA 108: 8351–8356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrell, P.L., Clegg, M.T. 2007. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. USA 104: 3289–3294.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nalam, V.J., Vales, M.I., Watson, C.J.W., Kianian, S.F., Riera-Lizarazu, O. 2006. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor. Appl. Genet. 112: 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Nalam, V.J., Vales, M.I., Watson, C.J.W., Johnson, E.B., Riera-Lizarazu, O. 2007. Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 116: 135–145.

    Article  PubMed  Google Scholar 

  • National Research Council. 1996. Lost crops of Africa. Volume 1. Grains. Washington, DC: National Academy Press.

    Google Scholar 

  • Nelson, J.C., Andreescu, C., Breseghello, F., Finney, P.L., Gualberto, D.G., Bergmann, C.J., Peña, R.J., Perretant, M.R., Leroy, P., Qualset, C.O., Sorrells, M.E. 2006. Quantitative trait locus analysis of wheat quality traits. Euphytica 149: 145–159.

    Article  CAS  Google Scholar 

  • Neves, S.S., Swire-Clark, G., Hilu, K.W., Baird, W.V. 2005. Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT-trnF sequences. Mol. Phyl. Evol. 35: 395–419.

    Article  CAS  Google Scholar 

  • Olsen, K.M., Caicedo, A.L., Polato, N., McClung, A., McCouch, S., Purugganan, M.D. 2006. Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics 173: 975–983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oumar, I., Mariac, C., Pham, J.-L., Vigoroux, Y. 2008. Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br.) as revealed by microsatellite loci. Theor. Appl. Genet. 117: 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Palaisa, K., Morgante, M., Tingey, S., Rafalski, A. 2006. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc. Natl. Acad. Sci. USA 101: 9885–9890.

    Article  Google Scholar 

  • Peng, Y.-Y., Wei, Y.-M., Baum, B.R., Jiang, Q.-T., Lan, X.-J., Dai, S.-F., Zheng, Y.-L. 2010. Phylogenetic investigation of Avena diploid species and the maternal genome donor of Avena polyploids. Taxon 59: 1472–1482.

    Google Scholar 

  • Peng, J.H., Sun, D., Nevo, E. 2011. Domestication evolution, genetics and genomics in wheat. Mol. Breeding 28: 281–301.

    Article  CAS  Google Scholar 

  • Piperidis, G., Piperidis, N., D’Hont, A. 2009. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol. Genet. Genomics 284: 65–73.

    Article  Google Scholar 

  • Piperno, D.R., Ranere, A.J., Holst, I., Iriarte, J., Dickau, R. 2009. Starch grain and phytolith evidence for early ninth millenium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. USA 106: 5019–5024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Planchuelo, A.M., Peterson, P.M. 2000. The species of Bromus (Poaceae: Bromeae) in South America. In: Jacobs, S.W.L., Everett, J. (eds.) Grasses: Systematics and evolution. Melbourne: CSIRO. pp. 89–101

    Google Scholar 

  • Pollan, M. 2001. The botany of desire. New York: Random House.

    Google Scholar 

  • Preston, J.C., Wang, H., Doebley, J., Kellogg, E.A. 2012. The role of teosinte glume architecture (tga1) in coordinated regulation and evolution of grass glumes and inflorescence axes. New Phytol. 193: 204–215.

    Article  CAS  PubMed  Google Scholar 

  • Purugganan, M.D., Fuller, D.Q. 2009. The nature of selection during plant domestication. Nature 457: 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay, L., Comadran, J., Druka, A., Marshall, D.F., Thomas, W.T.B., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P.M., Lundqvist, U., Franckowiak, J.D., Close, T.J., Muehlbauer, G.J., Waugh, R. 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43: 169–172.

    Article  CAS  PubMed  Google Scholar 

  • Remigereau, M.-S., Lakis, G., Rekima, S., Leveugle, M., Fontaine, M.C., Langin, T., Sarr, A., Robert, T. 2011. Cereal domestication and evolution of branching: evidence for soft selection in the Tb1 orthologue of pearl millet (Pennisetum glaucum [L.] R. Br.). PLoS ONE 6: e22404.

    Google Scholar 

  • Saisho, D., Purugganan, M.D. 2007. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177: 1765–1776.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sencer, H.A., Hawkes, J.G. 1980. On the origin of cultivated rye. Biol. J. Linn. Soc. 13: 299–313.

    Article  Google Scholar 

  • Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.-S., Gill, B.S., Faris, J.D. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics 172: 547–555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson-Wagner, R., Briskine, R., Schaefer, R., Hufford, M.B., Ross-Ibarra, J., Myers, C.L., Tiffin, P., Springer, N.M. 2012. Reshaping of the maize transcriptome by domestication. Proc. Natl. Acad. Sci. USA 109: 11878–11883.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sweeney, M., McCouch, S. 2007. The complex history of the domestication of rice. Ann. Bot. 100: 951–957.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sweeney, M.T., Thomson, M.J., Pfeil, B.E., McCouch, S. 2006. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18: 283–294.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanno, K., Willcox, G. 2006. How fast was wild wheat domesticated? Science 311: 1886.

    Article  CAS  PubMed  Google Scholar 

  • Triplett, J.K., Wang, Y., Zhong, J., Kellogg, E.A. 2012. Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L.) and relatives. PLoS ONE 7: e38702.

    Google Scholar 

  • van Heerwaarden, J., Doebley, J., Briggs, W.H., Glaubitz, J.C., Goodman, M.M., Sanchez Gonzalez, J.D.J., Ross-Ibarra, J. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl. Acad. Sci. USA 108: 1088–1092.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Heerwaarden, J., Hufford, M.B., Ross-Ibarra, J. 2012. Historical genomics of North American maize. Proc. Natl. Acad. Sci. USA 109: 12420–12425.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan, D.A., Lu, B.-R., Tomooka, N. 2008. The evolving story of rice evolution. Plant Sci. 174: 394–408.

    Article  CAS  Google Scholar 

  • Wang, Z.M., Devos, K.M., Liu, C.J., Wang, R.Q., Gale, M.D. 1998. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet. 96: 31–36.

    Google Scholar 

  • Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., Doebley, J.F. 2005. The origin of the naked grains of maize. Nature 436: 714–719.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., Ma, H., Zhang, G., He, Z. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40: 1370–1374.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Chen, J., Zhi, H., Yang, L., Li, W., Wang, Y., Li, H., Zhao, B., Chen, M., Diao, X. 2010. Population genetics of foxtail millet and its wild ancestor. BMC Genet. 11: 90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, J., Luo, M.-C., Chen, Z., You, F.M., Wei, Y., Zheng, Y., Dvorak, J. 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198: 925–937.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, E., Kislev, M.E., Hartmann, A. 2006. Autonomous cultivation before domestication. Science 312: 1608–1610.

    Article  CAS  PubMed  Google Scholar 

  • Willcox, G. 2005. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veget. Hist. Archaeobot. 14: 534–541.

    Article  Google Scholar 

  • Wright, S.I., Bi, I.V., Schroeder, S.G., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S. 2005. The effects of artificial selection on the maize genome. Science 308: 1310–1314.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Zhang, J., Yan, J., Song, R. 2011. Two transposable element insertions are causative mutations for the major domestication gene teosinte branched1 in modern maize. Cell Res 21: 1267–1270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou, Y., Lu, D., Li, C., Luo, J., Zhu, B.-F., Zhu, J., Shangguan, Y., Wang, Z., Sang, T., Zhou, B., Han, B. 2012. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24: 1034–1048.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zohary, D., Hopf, M. 2000. Domestication of plants in the Old World. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kellogg, E.A. (2015). Domestication. In: Flowering Plants. Monocots. The Families and Genera of Vascular Plants, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-15332-2_12

Download citation

Publish with us

Policies and ethics