Skip to main content

Description of the Family, Vegetative Morphology and Anatomy

Poaceae (R. Br.) Barnh. (1895). Gramineae Juss. (1789).

  • Chapter
Flowering Plants. Monocots

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 13))

Abstract

Rhizomatous perennials, bisexual or monoecious. Culms herbaceous to somewhat lignified, erect. Leaf blades broad, with pseudopetioles, ligules membranous or a fringe of hairs. Inflorescences branched or unbranched, the floral units subtended by bracts. Perianth green to brown or absent. Stamens 6; style branches and stigmas 3. Pollen monoporate, with an annulus, with channels in the exine, lacking scrobiculi. Ovule 1. Embryo lateral, differentiated with clear root and shoot meristems enclosed by sheaths (coleorhiza and coleoptile), several embryonic leaves, and a lateral haustorial organ (scutellum). Fruit indehiscent, with one seed, the seed coat fused to the inner wall of the pericarp, the hilum linear. Mesophyll with fusoid cells and cells with invaginated cell walls, midrib complex. Epidermis with multicellular microhairs, with alternating long and short cells, the short cells developing silica bodies. Photosynthetic pathway C3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrash, E.B., Bergmann, D.C. 2009. Asymmetric cell divisions: a view from plant development. Developmental Cell 16: 783–796.

    CAS  PubMed  Google Scholar 

  • Amarasinghe, V., Watson, L. 1988. Comparative ultrastructure of microhairs in grasses. Bot. J. Linn. Soc. 98: 303–319.

    Google Scholar 

  • Amarasinghe, V., Watson, L. 1989. Variation in salt secretory activity of microhairs in grasses. Aust. J. Plant Phys. 16: 219–229.

    Google Scholar 

  • André, J.-P. 1998. A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a microcasting method. IAWA J. 19: 265–278.

    Google Scholar 

  • Arber, A. 1934. The Gramineae: a study of cereal, bamboo, and grass. New York: Macmillan.

    Google Scholar 

  • Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., Kyozuka, J. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51: 1019–1029.

    CAS  PubMed  Google Scholar 

  • Arredondo, J.T., Schnyder, H. 2003. Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. New Phytol. 158: 305–314.

    Google Scholar 

  • Artschwager, E. 1951. Structure and taxonomic value of the dewlap in sugarcane. USDA Technical Bull. 1038: 1–12.

    Google Scholar 

  • Baker, G., Jones, L.H.P., Wardrop, I.D. 1959. Cause of wear in sheep’s teeth. Nature 184: 1583–1584.

    PubMed  Google Scholar 

  • Bergmann, D., Zehfus, M., Zierer, L., Smith, B., Gabel, M. 2009. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. Western N. Amer. Nat. 69: 105–114.

    Google Scholar 

  • Bess, E.C., Doust, A.N., Davidse, G., Kellogg, E.A. 2006. Zuloagaea, a new genus of tropical grass within the “bristle clade” (Poaceae: Paniceae). Syst. Bot. 31: 656–670.

    Google Scholar 

  • Bidlack, J.E., Jansky, S.H. 2011. Stern’s Introductory Plant Biology. New York: McGraw-Hill.

    Google Scholar 

  • Botha, C.E.J. 2013. A tale of two neglected systems - structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves. Frontiers Plant Sci. 4: 297.

    CAS  Google Scholar 

  • Bowden, B.N. 1970. The sugars in the extrafloral nectar of Andropogon gayanus var. bisquamulatus. Phytochemistry 9: 2315–2318.

    CAS  Google Scholar 

  • Bowden, B.N. 1971. Studies on Andropogon gayanus Kunth VI: the leaf nectaries of Andropogon gayanus var. bisquamulatus (Hochst.) Hack. (Gramineae). Bot. J. Linn. Soc. 64: 77–80.

    Google Scholar 

  • Branson, F.A. 1953. Two factors affecting resistance of grasses to grazing. J. Range Manage. 6: 165–171.

    Google Scholar 

  • Brown, W.V. 1975. Variations in anatomy, associations, and origins of Kranz tissue. Amer. J. Bot. 62: 395–402.

    Google Scholar 

  • Brown, W.V. 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23: 1–97.

    CAS  Google Scholar 

  • Brown, W.V., Heimsch, C., Emery, H.P. 1957. The organization of the grass shoot apex and systematics. Amer. J. Bot. 44: 590–595.

    Google Scholar 

  • Brown, W.V., Harris, W.F., Graham, J.D. 1959a. Grass morphology and systematics. I. The internode. Southwest. Nat. 4: 115–125.

    Google Scholar 

  • Brown, W.V., Pratt, G.A., Mobley, H.M. 1959b. Grass morphology and systematics. II. The nodal pulvinus. Southwest. Nat. 4: 126–133.

    Google Scholar 

  • Buckley, R. 1982. Sand rhizosheath of an arid zone grass. Plant Soil 66: 417–421.

    Google Scholar 

  • Buckley, T.N., Sack, L., Gilbert, M.E. 2011. The role of bundle sheath extension and life form in stomatal responses to leaf water status. Plant Phys. 156: 962–973.

    CAS  Google Scholar 

  • Burns, W. 1945. Corm and bulb formation in plants, with special reference to the Gramineae. Trans. Proc. Bot. Soc. Edinburgh 34: 316–347.

    Google Scholar 

  • Campbell, C.S., Kellogg, E.A. 1987. Sister group relationships of the Poaceae. In: Soderstrom, T.R., Hilu, K.W., Campbell, C.S., Barkworth, M.E. (eds.) Grass systematics and evolution. Washington, DC: Smithsonian Institution. pp. 217–224.

    Google Scholar 

  • Cao, K.-F., Yang, S.-J., Zhang, Y.-J., Brodribb, T.J. 2012. The maximum height of grasses is determined by roots. Ecol. Lett. 15: 666–672.

    PubMed  Google Scholar 

  • Carolin, R.C., Jacobs, S.W.L. 1973. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Bot. J. Linn. Soc. 66: 259–275.

    Google Scholar 

  • Chen, Y., Fan, X., Song, W., Zhang, Y., Xu, G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotech. J. 10: 139–149.

    CAS  Google Scholar 

  • Chochois, V., Vogel, J.P., Watt, M. 2012. Application of Brachypodium to the genetic improvement of wheat roots. J. Exp. Bot. 63: 3467–3474.

    CAS  PubMed  Google Scholar 

  • Christin, P.-A., Salamin, N., Savolainen, V., Duvall, M.R., Besnard, G. 2007. C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17: 1241–1247.

    CAS  PubMed  Google Scholar 

  • Christin, P.-A., Besnard, G., Samaritani, E., Duvall, M.R., Hodkinson, T.R., Savolainen, V., Salamin, N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18: 37–43.

    CAS  PubMed  Google Scholar 

  • Chuck, G., Cigan, A.M., Saeteurn, K., Hake, S. 2007. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 39: 544–549.

    CAS  PubMed  Google Scholar 

  • Clark, L.G., Fisher, J.B. 1987. Vegetative morphology of grasses: shoots and roots. In: Soderstrom, T.R., Hilu, K.W., Campbell, C.S., Barkworth, M.E. (eds.) Grass systematics and evolution. Washington, DC: Smithsonian Institution Press. pp. 37–45

    Google Scholar 

  • Clore, A.M. 2013. Cereal grass pulvini: agronomically significant models for studying gravitropism signaling and tissue polarity. Amer. J. Bot. 100: 101–110.

    CAS  Google Scholar 

  • Clowes, F.A.L. 2000. Pattern in root meristem development in angiosperms. New Phytol. 146: 83–94.

    Google Scholar 

  • Coudert, Y., Périn, C., Courtois, B., Khong, N.G., Gantet, P. 2010. Genetic control of root development in rice, the model cereal. Trends Pl. Sci. 15: 219–226.

    CAS  Google Scholar 

  • Cutler, D.F. 1969. IV. Juncales. In: Metcalfe, C.R. (ed.) Anatomy of the Monocotyledons. Oxford: Clarendon Press.

    Google Scholar 

  • Dai, M., Zhao, Y., Ma, Q., Hu, Y., Hedden, P., Zhang, Q., Zhou, D.X. 2007. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Phys. 144: 121–133.

    CAS  Google Scholar 

  • Dalla Vecchia, F., El Asmar, T., Calamassi, R., Rascio, N., Vazzana, C. 1998. Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus. Pl. Growth Reg. 24: 219–228.

    CAS  Google Scholar 

  • Deng, F., Yamaji, N., Xia, J., Ma, J.F. 2013. A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol. 163: 1353–1362.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dengler, N.G., Nelson, T. 1999. Leaf structure and development in C4 plants. In: Sage, R.F., Monson, R.K. (eds.) C4 plant biology. San Diego: Academic Press. pp. 133–172

    Google Scholar 

  • Dengler, N.G., Dengler, R.E., Hattersley, P.W. 1985. Differing ontogenetic origins of PCR (“Kranz”) sheaths in leaf blades of C4 grasses (Poaceae). Amer. J. Bot. 72: 284–302.

    Google Scholar 

  • Dolan, L., Costa, S. 2001. Evolution and genetics of root hair stripes in the root epidermis. J. Exp. Bot. 52: 413–417.

    CAS  PubMed  Google Scholar 

  • Doust, A.N. 2007a. Grass architecture: genetic and environmental control of branching. Curr. Opinion Pl. Biol. 10: 21–25.

    Google Scholar 

  • Doust, A. 2007b. Architectural evolution and its implications for domestication in grasses. Ann. Bot. 100: 941–950.

    PubMed Central  PubMed  Google Scholar 

  • Doust, A.N., Kellogg, E.A. 2006. Genotype-environment interactions for branching in the weed green millet (Setaria viridis) and the crop foxtail millet (S. italica) (Poaceae). Mol. Ecol. 15: 1335–1349.

    CAS  PubMed  Google Scholar 

  • Doust, A.N., Devos, K.M., Gadberry, M., Gale, M.D., Kellogg, E.A. 2004. Genetic control of branching in foxtail millet. Proc. Natl. Acad. Sci. USA 101: 9045–9050.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duell, R.W., Peacock, G.R. 1985. Rhizosheaths on mesophytic grasses. Crop Sci. 25: 880–883.

    Google Scholar 

  • Edwards, E.J., Smith, S.A. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 107: 2532–2537.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis, R.P. 1976. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-blade as viewed in transverse section. Bothalia 12: 65–109.

    Google Scholar 

  • Fahn, A. 1979. Secretory tissues in plants. London: Academic Press.

    Google Scholar 

  • Fiorani, F., Beemster, G.T.S., Bultynck, L., Lambers, H. 2000. Can meristematic activity determine variation in leaf size and elongation rate among four Poa species? a kinematic study. Plant Phys. 124: 845–856.

    CAS  Google Scholar 

  • Foster, T.M., Timmermans, M.C.P. 2009. Axial patterning in the maize leaf. In: Bennetzen, J.L., Hake, S.C. (eds.) Handbook of maize: Its biology. Heidelberg: Springer.

    Google Scholar 

  • Frank, M.J., Cartwright, H.N., Smith, L.G. 2003. Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130: 753–762.

    CAS  PubMed  Google Scholar 

  • Fujino, K., Matsuda, Y., Ozawa, K., Nishimura, T., Koshiba, T., Fraaije, M.W., Sekiguchi, H. 2008. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol. Genet. Genomics 279: 499–507.

    CAS  PubMed  Google Scholar 

  • Garbuzov, M., Reidinger, S., Hartley, S.E. 2011. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species. Ann. Bot. 108: 1355–1363.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gochnauer, M.B., McCully, M.E., Labbé, H. 1989. Different populations of bacteria associated with sheathed and bare regions of roots of field-grown maize. Plant Soil 114: 107–120.

    Google Scholar 

  • Goller, H. 1977. Beiträge zu Anatomie adulter Gramineenwurzeln im Hinblick auf taxonomische Verwendbarkeit. Beitr. Biol. Pflanzen 53: 217–307.

    Google Scholar 

  • GPWG 2001. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the Poaceae. Ann. Missouri Bot. Gard. 88: 373–457.

    Google Scholar 

  • GPWG II 2012. Grass Phylogeny Working Group II. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193: 304–312.

    Google Scholar 

  • Hattersley, P.W. 1987. Variations in photosynthetic pathway. In: Soderstrom, T.R., Hilu, K.W., Campbell, C.S., Barkworth, M.E. (eds.) Grass systematics and evolution. Washington, DC: Smithsonian Institution Press. pp. 49–64

    Google Scholar 

  • Hattersley, P.W., Browning, A.J. 1981. Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR (‘Kranz’) sheaths. Protoplasma 109: 371–401.

    Google Scholar 

  • Hattersley, P.W., Watson, L. 1975. Anatomical parameters for predicting photosynthetic pathways of grass leaves: The “maximum lateral cell count” and the “maximum cells distant count”. Phytomorphology 25: 325–333.

    Google Scholar 

  • Hattersley, P.W., Watson, L. 1992. Diversification of photosynthesis. In: Chapman, G.P. (ed.) Grass evolution and domestication. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hibara, K.-i., Obara, M., Hayashida, E., Abe, M., Ishimaru, T., Satoh, H., Itoh, J.-i., Nagato, Y. 2009. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Devel. Biol. 334: 345–354.

    Google Scholar 

  • Hochholdinger, F.F.G. 1998. Early post-embryonic root formation is specifically affected in the maize mutant lrt1. Plant J. 16: 247–255.

    CAS  PubMed  Google Scholar 

  • Hochholdinger, F., Zimmermann, R. 2008. Conserved and diverse mechanisms in root development. Curr. Opinion Pl. Biol. 11: 70–74.

    CAS  Google Scholar 

  • Hochholdinger, F., Park, W.J., Felix, G.H. 2001. Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize. Plant Phys. 125: 1529–1539.

    CAS  Google Scholar 

  • Hochholdinger, F., Park, W.J., Sauer, M., Woll, K. 2004. From weeds to crops: genetic analysis of root development in cereals. Trends Pl. Sci. 9: 42–48.

    CAS  Google Scholar 

  • Holechek, J.L., Pieper, R.D., Herbel, C.H. 1998. Range management: principles and practices. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Holloway-Phillips, M.-M., Brodribb, T.J. 2011. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. Plant Cell Environ. 34: 302–313.

    PubMed  Google Scholar 

  • Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., Hartung, W. 2001. The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52: 2245–2264.

    CAS  PubMed  Google Scholar 

  • Hoshikawa, K. 1969. Underground organs of the seedlings and the systematics of Gramineae. Bot. Gaz. 130: 192–203.

    Google Scholar 

  • Houshmand, S., Knox, R.E., Clarke, F.R., Clarke, J.M. 2007. Microsatellite markers flanking a stem solidness gene on chromosome 3BL in durum wheat. Mol. Breeding 20: 261–270.

    CAS  Google Scholar 

  • Hu, F.Y., Tao, D.Y., Sacks, E., Fu, B.Y., Xu, P., li, J., Yang, Y., McNally, K., Khush, G.S., Paterson, A.H., Li, Z.-K. 2003. Convergent evolution of perenniality in rice and sorghum. Proc. Natl. Acad. Sci. USA 100: 4050–4054.

    Google Scholar 

  • Hu, J., Zhu, L., Zeng, D., Gao, Z., Guo, I., Fang, Y., Zhang, G., Dong, G., Yan, M., Liu, J., Qian, Q. 2010. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol. Biol. 73: 283–292.

    Google Scholar 

  • Isa, M., Bai, S., Yokoyama, T., Ma, J.F., Ishibashi, Y., Yuasa, T., Iwaya-Inoue, M. 2010. Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 331: 361–375.

    CAS  Google Scholar 

  • Jackson, D. 2009. Vegetative shoot meristems. In: Bennetzen, J.L., Hake, S.C. (eds.) Handbook of maize: Its biology: Springer Science & Business Media.

    Google Scholar 

  • Jackson, D., Veit, B., Hake, S. 1994. Expression of the maize KNOTTED-1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413.

    CAS  Google Scholar 

  • Jin, J., Huang, W., Gao, J.-P., Yang, J., Shi, M., Zhu, M.-Z., Luo, D., Lin, H.-X. 2008. Genetic control of rice plant architecture under domestication. Nat. Genet. 40: 1365–1369.

    CAS  PubMed  Google Scholar 

  • Johnston, C.R., Watson, L. 1976. Microhairs: a universal characteristic of non-festucoid grass genera? Phytomorphology 26: 297–301.

    Google Scholar 

  • Judziewicz, E.J., Soderstrom, T.R. 1989. Morphological, anatomical, and taxonomic studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contr. Bot. 68: 1–52.

    Google Scholar 

  • Kanai, R., Edwards, G.E. 1999. The biochemistry of C4 photosynthesis. In: Sage, R.F., Monson, R.K. (eds.) C4 plant biology. Amsterdam: Elsevier. pp. 49–87

    Google Scholar 

  • Kaufman, P.B., Brock, T.G., Song, I., Rho, Y.B., Ghosheh, N.S. 1987. How cereal grass shoots perceive and respond to gravity. Amer. J. Bot. 74: 1446–1457.

    CAS  Google Scholar 

  • Kebrom, T.H., Chandler, P.M., Swain, S.M., King, R.W., Richards, R.A., Spielmeyer, W. 2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Phys. 160: 308–318.

    CAS  Google Scholar 

  • Kellogg, E.A. 1990. Ontogenetic studies of florets in Poa (Gramineae): allometry and heterochrony. Evolution 44: 1978–1989.

    Google Scholar 

  • Kellogg, E.A. 2000. The grasses: a case study in macroevolution. Ann. Rev. Ecol. Syst. 31: 217–238.

    Google Scholar 

  • Kellogg, E.A., Campbell, C.S. 1987. Phylogenetic analyses of the Gramineae. In: Soderstrom, T.R., Hilu, K.W., Campbell, C.S., Barkworth, M.E. (eds.) Grass systematics and evolution. Washington, DC: Smithsonian Institution Press. pp. 310–322

    Google Scholar 

  • Kellogg, E.A., Watson, L. 1993. Phylogenetic studies of a large data set. I. Bambusoideae, Pooideae, and Andropogoneae (Gramineae). Bot. Rev. 59: 273–343.

    Google Scholar 

  • Kim, C.M., Dolan, L. 2011. Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa. New Phytol. 192: 601–610.

    CAS  PubMed  Google Scholar 

  • Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H., Inukai, Y. 2011. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS 5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J. 67: 472–484.

    Google Scholar 

  • Kutschera, L., Lichtenegger, E. 1982. Wurzelatlas mitteleuropäischer Grünlandpflanzen. Band I. Monocotyledoneae. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Langdale, J.A., Zelitch, I., Miller, E., Nelson, T. 1988. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J. 7: 3643–3651.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li, P.J., Wang, Y.H., Qian, Q., Fu, Z.M., Wang, M., Zeng, D.L., Li, B.H., Wang, X.J., Li, J.Y. 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 17: 402–410.

    CAS  PubMed  Google Scholar 

  • Li, L., Shi, Z.Y., Li, L., Shen, G.Z., Wang, X.Q., An, L.S., Zhang, J.L. 2010. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol. Plant 3: 807–817.

    CAS  PubMed  Google Scholar 

  • Liakoura, V., Fotelli, M.N., Renneberg, H., Karabourniotis, G. 2009. Should structure-function relations be considered separately for homobaric vs. heterobaric leaves? Amer. J. Bot. 96: 612–619.

    Google Scholar 

  • Liese, W. 1998. The anatomy of bamboo culms. Technical Report 18. Beijing: International Network for Bamboo and Rattan.

    Google Scholar 

  • Linder, H.P., Thompson, J.F., Ellis, R.P., Perold, S.M. 1990. The occurrence, anatomy, and systematic implications of the glands in Pentaschistis and Prionanthium (Poaceae, Arundinoideae, Arundineae). Bot. Gaz. 151: 221–233.

    Google Scholar 

  • Liphschitz, N., Waisel, Y. 1974. Existence of salt glands in various genera of the Gramineae. New Phytol. 73: 507–513.

    Google Scholar 

  • Liu, S., Wang, J., Wang, L., Wang, X., Xue, Y., Wu, P., Shou, H. 2009. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res. 19: 1110–1119.

    CAS  PubMed  Google Scholar 

  • Ma, J.F., Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends Pl. Sci. 11: 392–397.

    CAS  Google Scholar 

  • Majer, C., Xu, C., Berendzen, K.W., Hochholdinger, F. 2012. Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize (Zea mays L.). Phil. Trans. R. Soc. London B 367: 1542–1551.

    CAS  Google Scholar 

  • March, R.H., Clark, L.G. 2011. Sun-shade variation in bamboo (Poaceae: Bambusoideae) leaves. Telopea 13: 93–104.

    Google Scholar 

  • Marcum, K.B. 1999. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci. 39: 1153–1160.

    Google Scholar 

  • Martínez-y-Pérez, J.L., Mejía-Saulés, T., Sosa, V. 2008. A taxonomic revision of Luziola (Poaceae: Oryzeae). Syst. Bot. 33: 702–718.

    Google Scholar 

  • Massey, F.P., Hartley, S.E. 2009. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. J. Animal Ecol. 78: 281–291.

    Google Scholar 

  • McCully, M. 1995. How do real roots work? Plant Phys. 109: 1–9.

    CAS  Google Scholar 

  • McSteen, P. 2009. Hormonal regulation of branching in grasses. Plant Phys. 149: 46–55.

    CAS  Google Scholar 

  • Metcalfe, C.R. 1960. Anatomy of the monocotyledons. I. Gramineae. Oxford: Clarendon Press.

    Google Scholar 

  • Moose, S.P., Sisco, P.H. 1994. Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6: 1343–1355.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moose, S.P., Sisco, P.H. 1996. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Devel. 10: 3018–3027.

    CAS  PubMed  Google Scholar 

  • Moose, S.P., Lauter, N., Carlson, S.R. 2004. The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics 166: 1451–1461.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Motomura, H., Fujii, T., Suzuki, M. 2004. Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriére) Rehder (Poaceae: Bambusoideae). Ann. Bot. 93: 235–248.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Motomura, H., Fujii, T., Suzuki, M. 2006. Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Ann. Bot. 97: 513–519.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nardmann, J., Ji, J., Werr, W., Scanlon, M.J. 2004. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131: 2827–2839.

    CAS  PubMed  Google Scholar 

  • Ning, J., Zhang, B., Wang, N., Zhou, Y., Xiong, L. 2011. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell 23: 4334–4347.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oi, T., Taniguchi, M., Miyake, H. 2012. Morphology and ultrastructure of the salt glands on the leaf surface of Rhodes grass (Chloris gayana Kunth). Int. J. Plant Sci. 173: 454–463.

    CAS  Google Scholar 

  • Page, V.M. 1947. Leaf anatomy of Streptochaeta and the relation of this genus to the bamboos. Bull. Torrey Bot. Club 74: 232–239.

    Google Scholar 

  • Page, V.M. 1951. Morphology of the spikelet of Streptochaeta. Bull. Torrey Bot. Club 78: 22–37.

    Google Scholar 

  • Paiva, E.A.S., Machado, S.R. 2003. Collenchyma in Panicum maximum (Poaceae): localisation and possible role. Aust. J. Bot. 51: 69–73.

    Google Scholar 

  • Peterson, P.M., Romaschenko, K., Herrera Arrieta, Y., Saarela, J.M. 2014. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63: 1212–1243.

    Google Scholar 

  • Philipson, W.R. 1935a. A grass with spiral phyllotaxis: Micraira subulifolia. Bull. Misc. Inf. (Kew) 1935: 324–326.

    Google Scholar 

  • Philipson, W.R. 1935b. The development and morphology of the ligule in grasses. New Phytol. 34: 310–325.

    Google Scholar 

  • Pieruschka, R., Chavarría-Krauser, A., Cloos, K., Scharr, H., Schurr, U., Jahnke, S. 2008. Photosynthesis can be enhanced by lateral CO2 diffusion inside leaves over distances of several millimeters. New Phytol. 178: 335–347.

    CAS  PubMed  Google Scholar 

  • Piperno, D.R. 2006. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. New York: Alta Mira.

    Google Scholar 

  • Piperno, D.R., Pearsall, D.M. 1998. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contr. Bot. 85: 1–40.

    Google Scholar 

  • Pizzolato, T.D. 2000. A systematic view of the development of vascular systems in culms and inflorescences of grasses. In: Jacobs, S.W.L., Everett, J. (eds.) Grasses: Systematics and evolution. Melbourne: CSIRO. pp. 8–28

    Google Scholar 

  • Poethig, S. 1984. Cellular parameters of leaf morphogenesis in maize and tobacco. In: White, R., Dickinson, W.C. (eds.) Contemporary problems in plant anatomy. New York: Academic Press. pp. 235–259

    Google Scholar 

  • Pohl, R.W. (ed.) 1980. Family #15, Gramineae. Flora Costaricensis. Chicago: Field Museum of Natural History.

    Google Scholar 

  • Prasad, V., Strömberg, C.A.E., Leaché, A.D., Samant, B., Patnaik, R., Tang, L., Mohabey, D.M., Ge, S., Sahni, A. 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Comm. 2: 480.

    CAS  Google Scholar 

  • Prat, H. 1932. L’épiderme des graminées: étude anatomique et systématique. Ann. Sci. Nat.: Botanique, Séries 10 14: 117–324.

    Google Scholar 

  • Prendergast, H.D.V., Hattersley, P.W. 1987. Australian C4 grasses (Poaceae): leaf blade anatomical features in relation to C4 acid decarboxylation types. Aust. J. Bot. 35: 355–382.

    Google Scholar 

  • Prendergast, H.D.V., Hattersley, P.W., Stone, N.E. 1987. New structural/biochemical associations in leaf blades of C4 grasses (Poaceae). Aust. J. Plant Phys. 14: 403–420.

    CAS  Google Scholar 

  • Price, S.R. 1911. The roots of some North African desert-grasses. New Phytol. 10: 328–340.

    Google Scholar 

  • Prychid, C.J., Rudall, P.J., Gregory, M. 2004. Systematics and biology of silica bodies in monocotyledons. Bot. Rev. 69: 377–440.

    Google Scholar 

  • Ramsay, L., Comadran, J., Druka, A., Marshall, D.F., Thomas, W.T.B., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P.M., Lundqvist, U., Franckowiak, J.D., Close, T.J., Muehlbauer, G.J., Waugh, R. 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43: 169–172.

    CAS  PubMed  Google Scholar 

  • Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Benett, M., Traas, J., Friml, J., Kuhlemeier, C. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–260.

    CAS  PubMed  Google Scholar 

  • Remigereau, M.-S., Lakis, G., Rekima, S., Leveugle, M., Fontaine, M.C., Langin, T., Sarr, A., Robert, T. 2011. Cereal domestication and evolution of branching: evidence for soft selection in the Tb1 orthologue of pearl millet (Pennisetum glaucum [L.] R. Br.). PLoS ONE 6: e22404.

    Google Scholar 

  • Röser, M., Heklau, H. 2011. Abscission of leaf laminas - an unnoticed factor in tussock grass formation. Flora 206: 32–37.

    Google Scholar 

  • Rothwell, N.V. 1966. Evidence for diverse cell types in the apical region of the root epidermis of Panicum virgatum. Amer. J. Bot. 53: 7–11.

    Google Scholar 

  • Row, H.C., Reeder, J.R. 1957. Root-hair development as evidence of relationships among genera of the Gramineae. Amer. J. Bot. 44: 596–601.

    Google Scholar 

  • Sage, R.F. 1999. Why C4 photosynthesis? In: Sage, R.F., Monson, R.K. (eds.) C4 plant biology. San Diego: Academic Press. pp. 3–14.

    Google Scholar 

  • Sakai, W.S., Sanford, W.G. 1984. A developmental study of silicification in the abaxial epidermal cells of sugarcane leaf blades using scanning electron microscopy and energy dispersive X-ray analysis. Amer. J. Bot. 71: 1315–1322.

    CAS  Google Scholar 

  • Sanson, G.D., Kerr, S.A., Gross, K.A. 2007. Do silica phytoliths really wear mammalian teeth? J. Archaeol. Sci. 34: 526–531.

    Google Scholar 

  • Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K., Takahashi, H., Watanabe, A., Akagi, H. 2012. Mutations in rice (Oryza sativa) heavy metal ATPase2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 53: 213–224.

    CAS  PubMed  Google Scholar 

  • Scanlon, M.J., Freeling, M. 1997. Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath. Devel. Biol. 182: 52–66.

    CAS  Google Scholar 

  • Shane, M.W., McCully, M.E., Canny, M.J. 2000. The vascular system of maize stems revisited: implications for water transport and xylem safety. Ann. Bot. 86: 245–258.

    Google Scholar 

  • Shane, M.W., McCully, M.E., Canny, M.J., Pate, J.S., Lambers, H. 2011. Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): relation to root structural development and longevity. Ann. Bot. 108: 1307–1322.

    PubMed Central  PubMed  Google Scholar 

  • Sharman, B.C. 1942. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6: 245–282.

    Google Scholar 

  • Simpson, G.G. 1951. Horses: The story of the horse family in the modern world and through sixty million years of history. Oxford: Oxford University Press.

    Google Scholar 

  • Sinha, N.R., Kellogg, E.A. 1996. Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Amer. J. Bot. 83: 1458–1570.

    Google Scholar 

  • Smith, S., De Smet, I. 2012. Root system architecture: insights from Arabidopsis and cereal crops. Phil. Trans. R. Soc. London B 367: 1441–1452.

    CAS  Google Scholar 

  • Soderstrom, T.R., Judziewicz, E.J. 1987. Systematics of the amphi-Atlantic bambusoid genus Streptogyna (Poaceae). Ann. Missouri Bot. Gard. 74: 871–888.

    Google Scholar 

  • Song, Y., You, J., Xiong, L. 2009. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinotsteroid hormone responses and plant morphogenesis. Plant Mol. Biol. 70: 297–309.

    CAS  PubMed  Google Scholar 

  • Spatafora, J.W., Sung, G.-H., Sung, J.-M., Hywel-Jones, N.L., White, Jr., J.F. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16: 1701–1711.

    CAS  PubMed  Google Scholar 

  • St. Aubin, G., Canny, M.J., McCully, M.E. 1986. Living vessel elements in the late metaxylem of sheathed maize roots. Ann. Bot. 58: 577–588.

    Google Scholar 

  • Stevens, P.F. 2012. Angiosperm phylogeny website. Version 12, July 2012 [and more or less continuously updated since]. 2001 onward.

    Google Scholar 

  • Strömberg, C.A.E. 2006. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32: 236–258.

    Google Scholar 

  • Sugiyama, S. 2005. Developmental basis of interspecific differences in leaf size and specific leaf area among C3 grass species. Func. Ecol. 19: 916–924.

    Google Scholar 

  • Sylvester, A.W., Smith, L.G. 2009. Cell biology of maize leaf development. In: Bennetzen, J.L., Hake, S.C. (eds.) Handbook of maize: its biology: Springer Science and Business Media.

    Google Scholar 

  • Sylvester, A.W., Cande, W.Z., Freeling, M. 1990. Division and differentiation during normal and liguleless-1 maize leaf development. Development 110: 985–1000.

    CAS  PubMed  Google Scholar 

  • Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., Sun, C. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40: 1360–1364.

    CAS  PubMed  Google Scholar 

  • Tateoka, T. 1958. Notes on some grasses. VIII. On leaf structure of Arundinella and Garnotia. Bot. Gaz. 120: 101–109.

    Google Scholar 

  • Thomas, H.H. 1921. Some observations on plants in the Libyan desert. J. Ecol. 9: 75–89.

    Google Scholar 

  • Tolley, B.J., Sage, T.L., Langdale, J.A., Hibberd, J.M. 2012. Individual maize chromsomes in the C3 plant oat can increase bundle sheath cell size and vein density. Plant Phys. 159: 1418–1427.

    CAS  Google Scholar 

  • Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., Chu, C. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3-SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24: 2562–2577.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ueno, O. 1992. Immunogold localization of photosynthetic enzymes in leaves of Aristida latifolia, a unique C4 grass with a double chlorenchymatous bundle sheath. Phys. Plant. 85: 189–196.

    CAS  Google Scholar 

  • Ueno, O., Agaric, S. 2005. Silica deposition in cell walls of the stomatal apparatus of rice leaves. Plant Prod. Sci. 8: 71–73.

    Google Scholar 

  • Verboom, G.A., Linder, H.P., Stock, W.D. 2003. Phylogenetics of the grass genus Ehrharta: evidence for radiation in the summer-arid zone of the South African Cape. Evolution 57: 1008–1021.

    PubMed  Google Scholar 

  • Vicentini, A., Barber, J.C., Giussani, L.M., Aliscioni, S.S., Kellogg, E.A. 2008. Multiple coincident origins of C4 photosynthesis in the Mid- to Late Miocene. Global Change Biol. 14: 2963–2977.

    Google Scholar 

  • Walker, R.P., Acheson, R.M., Técsi, L.I., Leegood, R.C. 1997. Phosphoenolpyruvate carboxykinase in C4 plants: its role and regulation. Aust. J. Plant Phys. 24: 459–468.

    CAS  Google Scholar 

  • Wang, Y., Li, J. 2008a. Rice, rising. Nat. Genet. 40: 1273–1275.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Li, J. 2008b. Molecular basis of plant architecture. Ann. Rev. Plant Biol. 59: 253–279.

    CAS  Google Scholar 

  • Wang, L., Peterson, R.B., Brutnell, T.P. 2011. Regulatory mechanisms underlying C4 photosynthesis. New Phytol. 190: 9–20.

    CAS  PubMed  Google Scholar 

  • Watson, L., Dallwitz, M.J. 1992 onward. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references, 23rd April 2010 edn. Wallingford: CAB International.

    Google Scholar 

  • Weaver, J.E., Zink, E. 1945. Extent and longevity of the seminal roots of certain grasses. Plant Phys. 20: 359–379.

    CAS  Google Scholar 

  • Wolbang, C.M., Davies, N.W., Taylor, S.A., Ross, J.J. 2007. Gravistimulation leads to asymmetry of both auxin and gibberellin levels in barley pulvini. Phys. Plant. 131: 140–148.

    CAS  Google Scholar 

  • Wu, X., Tang, D., Li, M., Wang, K., Cheng, Z. 2013. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Phys. 161: 317–329.

    CAS  Google Scholar 

  • Wullstein, L.H., Pratt, S.A. 1981. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Amer. J. Bot. 68: 408–419.

    Google Scholar 

  • Wullstein, L.H., Bruening, M.L., Bollen, W.B. 1979. Nitrogen fixation associated with sand grain root sheaths (rhizosheaths) of certain xeric grasses. Phys. Plant. 46: 1–4.

    CAS  Google Scholar 

  • Xiang, J.-J., Zhang, G.-H., Qian, Q., Xue, H.-W. 2012. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Phys. 159: 1488–1500.

    CAS  Google Scholar 

  • Xu, M., Zhu, L., Shou, H.X., Wu, P. 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Phys. 46: 1674–1681.

    CAS  Google Scholar 

  • Yamaguchi, N., Ishikawa, S., Abe, T., Baba, K., Arao, T., Terada, Y. 2012. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J. Exp. Bot. 63: 2729–2737.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji, N., Ma, J.F. 2009. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21: 2878–2883.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji, N., Ma, J.F. 2014. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends in Plant Science 19: 556–563.

    CAS  PubMed  Google Scholar 

  • Yamaji, N., Mitatni, N., Ma, J.F. 2008. A transporter regulating silicon distribution in rice shoots. Plant Cell 20: 1381–1389.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji, N., Chiba, Y., Mitani-Ueno, N., Ma, J.F. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160: 1491–1497.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji, N., Sasaki, A., Xia, J.X., Yokosho, K., Ma, J.F. 2013. A node-based switch for preferential distribution of manganese in rice. Nature Commun. 4: 2442.

    Google Scholar 

  • Yang, L., Conway, S.R., Poethig, R.S. 2011. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138: 245–249.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, S.-Y., Grønlund, M., Jakobsen, I., Grotemeyer, M.S., Rentsch, D., Miyao, A., Hirochika, H., Kumar, C.S., Sundaresan, V., Salamin, N., Catausan, S., Mattes, N., Heuer, S., Paszkowski, U. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24: 4236–4251.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Young, I.M. 1995. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 130: 135–139.

    Google Scholar 

  • Yu, B., Lin, Z., Li, H., Li, X., Li, J., Wang, Y., Zhang, X., Ahu, Z., Zhai, W., Wang, X., Xie, D., Sun, C. 2007. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52: 891–898.

    CAS  PubMed  Google Scholar 

  • Zhang, G.H., Xu, Q., Zhu, X.D., Qian, Q., Xue, H.W. 2009. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21: 719–735.

    PubMed Central  PubMed  Google Scholar 

  • Zhao, S.-Q., Hu, J., Guo, L.-B., Qian, Q., Xue, H.-W. 2010. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res. 20: 935–947.

    CAS  PubMed  Google Scholar 

  • Zhu, X.G., Long, S.P., Ort, D.R. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19: 153–159.

    CAS  PubMed  Google Scholar 

  • Zou, J.H., Zhang, S.Y., Zhang, W.P., Li, G., Chen, Z.X., Zhai, W.X., Zhao, X.F., Pan, X.B., Xie, Q., Zhu, L.H. 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabiodpsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48: 687–696.

    CAS  PubMed  Google Scholar 

  • Zou, L., Sun, X., Zhang, Z., Liu, P., Wu, J., Tian, C., Qiu, J., Lu, T. 2011. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Phys. 156: 1589–1602.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kellogg, E.A. (2015). Description of the Family, Vegetative Morphology and Anatomy. In: Flowering Plants. Monocots. The Families and Genera of Vascular Plants, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-15332-2_1

Download citation

Publish with us

Policies and ethics